AGLUTININAS PARA 11 SEROTIPOS DE LEPTOSPIRA EN BOVINOS DE LOS DEPARTAMENTOS DE BOACO, MANAGUA, MATAGALPA Y GRANADA

Por

Ricardo Valle Buitrago

Tesis

Presentada a la consideración del Honorable Tribunal Examinador, como requisito parcial para obtener el Título de

INGENIERO AGRONOMO

Escuela Nacional de Agricultura y Ganadería Managua, Nicaragua, C. A.

AGLUTININAS PALA 11 SEROTIPOS DE LEPTOSPIRA EN BOVINOS DE LOS DEPARTAMENTOS DE BOACO, MANAGUA, MATAGALPA Y GLANADA

Por

Ricardo Valle Buitrago

Tesis

Presentada a la consideración del Honorable Tribunal Examinador, como requisito parcial para obtener el Título de INGENIERO AGRONOMO

Escuela Nacional de Agricultura y Ganadería

Managua, Nicaragua, C. A.

1964

Aprobada: 1. 6. Couts

Fecha: 20 DIO 1965

Dedico este trabajo

a mis podres,

abuelos

y hermonos.

RECONCCLAIMITOS

El autor desea agradecer al Dr. Lawrence G. Clark y el Sr. Víctor M. Varela-Díaz, de la Misión Científica de la Universidad de Pennsylvania, por la valiosa cooperación prestada para la realización de este trabajo.

Asi mismo agradece a la señorita Indiana M. Valle Buitrago y al Br. Cristóbal Ubeda por la cooperación prestada en el trabajo de Mecanografía.

INDICE

Introducción	1
Literatura Revisada	2
Materiales y Métodos	15
Resultados y Conclusiones	15
Resumen	20
Apéndice	31
Bibliografía	35

LISTA DE CUADROS Y FIGURAS

Cuadro	I÷	Porcentaje de Infección por Departamentos	23
Cuadro	II.	Análisis Estadístico entre Departamentos	24
Cuadro	III.	Porcentaje de Infección por Razas	25
Cuadro	IV.	Análisis Estadístico entre Razas	26
Cuadro	ν.	Frecuencia de Títulos entre Serotipos	27
Cuadro	VI.	Estribución de Títulos entre Edades	28
Cuadro	VII.	Distribución de Serotipos entre Edades	2 9
Cuadro	vIII.	Distribución de Serotipos entre Razas	30
Cuadro	IX.	Distribución de Serotipos entre Departamentos	ָר כ
Figura	I.	Distribución de Positivos por Serotipo	
Figura	II.	Frecuencia de Serotipos entre Razas	33

INFLODUCCION

Muchos son los factores que hay que tonar en cuenta cuando se pretende hacer un estudio de la ganadería de un país. En Nicaragua merecen especial atención la nutrición, las razas que mejor se adaptan a las diferentes zonas, el manejo de los animales, así como las enfermedades que principalmente los atacan.

En el estudio de una enfermedad es de primaria importancia el conocer la presencia de ella en el país, los diferentes tipos presentes, las zonas donde con mayor frecuencia se encuentra y la proporción de la población atacada.

El conocimiento de los aspectos de la enfermedad antes mencionados es de suma importancia para el planeamiento de campañas que "
tenten su control, ya que la misma causa numerosas pérdidas que seguramente han pasado desapercibidas. Además, por tratarse de una enfermedad que puede transmitirse al hombre, posee importancia desde el
punto de vista de la salud pública.

El presente trabajo se realizó con el objeto de determinar la presencia de la Leptospirosis en un grupo de vacas lecheras en producción, en los departamentos de Boaco, Managua, Matagalpa y Granada.

Al mismo tiempo se determinaron los serotipos prevalentes en general y por departamentos, los títulos existentes y las relaciones entre serotipo, edad, título y departamento.

Se determinó la presencia de la enfermedad por métodos serológicos, mediante la prueba de aglutimación microscópica con antígenos vivos. Se intentó además el aislamiento del organismo causante. El trabajo se realizó en el Laboratorio de Leptospirosis de la Misión Científica de la Universidad de Pennsylvania en Nicaragua.

LITERATURA REVISADA

Historia y Distribución

La Leptospirosis se describió primeramente como una enfermedad en el hombre. Esta se confundió con la fiebre amarilla hasta el
descubrimiento de la transmisión del virus de dicha fiebre por un mosquito (34). Muchos años antes de que fuese identificado el agente
etiológico y los animales huéspedes, se conocía como la enfermedad de
Weil (13).

En Noviembre de 1914 en la Universidad Emperial de Kyushu,
Inada et al fueron los primeros en ver espiroquetas en el tejido
hepático de un cobayo inyectad com la sangre de una paciente de la
enfermedad de Weil. Concluyeron que la espiroqueta era la causante
de la enfermedad, llamándole Spirochaeta icterohaemorrhagiae. Este
agente causante fue descubierto independientemente un poco más tarde
por los investigadores alemanes Hübener y Beiter quienes lo llamaron
S. nodosa; y por Uhlenhut y Fromme los cuales lo denominaron S.
icterogenes. Noguchi estudió cuidadosamente la S. icterohaemorrhagiae
de Inada, así como cepas encontradas por los británicos en Flandes y
otras procedentes de ratas salvajes de los Estados Unidos. El consideró que la morfología era suficiente criterio taxonómico para la
creación de un nuevo género, al que llamó Leptospira e incluyó en el
orden Spirochaetales (3).

Más tarde se descubrieron nuevos serotipos en el hombre y los animales. El primero fue L. <u>hebdonadis</u>, causante de una leve "fiebre de siete días" en Asia: En 1925, se identificó a <u>L. auturmalis</u>, como

responsable de una "fiebre de otoño" en el Japón. Científicos holandeses descubrieron a L. pyroxenes en 1923 y a L. bataviae en 1926, como patógenas en el hombre en las Indias Orientales (13).

Michin y Azzinov, en el Cáucaso Septentrional (1935), fueron los primeros en asociar la Leptospirosis con una enfermedad en bovinos (15). En 1944, Golikov informó la existencia en Palestina de una infección enzoótica semejante. Más tarde Freund señaló que la enfermedad de Palestina había sido reconocida por primera vez en 1941. El organismo causante, fue llamado L. bovis, al resultar serológicamente distinto a L. interchaemorrhagiae (16). Nikolajev estableció en 1946 que la causa de la epizootia en Emaia era L. grippotyphosa. Más tarde se vió que L. bovis era sinónimo de L. grippotyphosa (3).

La leptospirosis bovina se reconoció por primera vez en los Estados Unidos en 1944, cuando Jungherr informó tres casos fatales en vacas lecheras de Connecticutt (21). Este investigador describió la enfermedad y demostró la presencia de los organismos infectantes en tejidos del ganado (17). Luego la enfermedad fue encontrada en Montana en 1945, en Texas en 1946, y en Illinois en 1948 (15).

En 1946 Beker y Little (15), dislaron el agente causante que fue identificado por Gochenour, Yager y Witnore, en 1930, como L. pomona (3). Este serotipo es el responsable del 98% de las anzootias de Leptospirosis en bovinos y suinos de los Estados Unidos. Además se han detectado aglutininas para L. sejroe, L. canicola, L. icterohaemorrhamiae, L. auturmalis, L. hebdomadis y L. grippotyphosa en vacunos y suinos (25).

L. <u>ictorohaemorrhagiae</u> se ha establecido como causante de enfermedad en el gamado de Inglaterra. Existe evidencia de que <u>L. hyos</u> y <u>L. australia</u> causan Leptospirosis bovina en Suiza, Australia y Sur América (29).

Las mayorías de las leptospirosis en la América Latina han sido relacionadas con L. <u>icterohaemorrhagiae</u>. Se han encontrado casos de infección humana con L. <u>canicola</u> en Cuba, Puerto Eico, la Argentina, el Brasil y el Uruguay. En Puerto Eico han encontrado seis serotipos en humanos (2).

En la provincia argentina de Corrientes se diagnosticó L.

pomona en el ganado como causante de parto prematuro, generalmente
con el feto muerto, observándose también una alta mortalidad en terneros de cinco meses (6). En Campinhas, Brasil se encontró un porcentaje de 28.3 seropositivos en bovinos (12). En 1961 se aisló L. pomona
de cerdos en Sao Paulo (31).

Peña Chavarria et al observaron leptospiras en sangre y orina de miños en San José de Costa Rica. Scrológicamente, once reacciones para L. icterohaemorrhaviae. En Panamá, Calero et al encontraron títulos significantes en humanos para diversos serotipos (2).

Lecientemente en Guatemala se llevó a cabo um estudio serológico por la ONS/FAD estableciéndose la presencia de aglutiminas
leptospirales en vacas, cerdos, caballos, perros, ovejas y cabras.

Con pocas excepciones las reacciones en los bovinos fueron para el
serogrupo Hebdonadis, mientras que en las otras especies se obtuvieron
reacciones con L. pomona, y/o L. autummalis (1).

En Nicaragua, Egacras, utilizando antígenos maertos para L.

pomona encontró dos casos positivos en Eivas de un total de 119 muestras. En Nandaine obtavo mueve títulos positivos para el mismo serotipo (11). De ciento veinte sucros enviados a la Universidad de

Pemasylvania por el MAG, el 22% dió reacciones positivas para L. pomona
y L. hardjo y L. hyen (23).

Cruz, en bovinos de los departamentos de León, Chontales y Estelí estableció el siguiente orden de prevalencia de serotipos:

L. hardjo, L. pomona, L. hyos, L. grippotyphosa, L. canicola, L. ballum, L. autumnalis, L. bataviae, L. icterohaemorrhagiae, L. alexi y L. australis. Además encontró que el departamento más atacado fue el de Chontales con un 7533% de infección, siguiéndolo el de León con 51.54% y por último el de Estelí con 12.02% (10). Etiología e Importancia

Las leptospirosis son enfermedades atribuídas a diferentes nicroorganismos bien definidos antígenicamente, del género <u>Leptospira</u>

(2). La gravedad de la enfermedad varía con el tipo de leptospira responsable de la infección y con las condiciones ambientales (4).

Por nucleos años las ratas y los perros se consideraron los principales portadores de las leptospiras. Según progresa la investigación la gama de huéspedes va en aumento no sólo en animales domésticos sino en un elevado mánero de maníferos salvajes. El organismo se localiza en los riñones del huésped y es expulsado por la orina, transformándose asi estos animales en importantes focos de infección. El hombre u otros animales resultan infectados mediante el contacto directo e indirecto con la orina de estos eliminadores (33).

La enfermedad causa uma pérdida mayor de 100.000.000 de dolares anuales (20) a la ganadería de los Estados Unidos, mayormente
atribuible a pérdidas de crías por aborto, muerte de animales jóvenes
por laanemia hemolítica, pérdidas de carne por retraso en el crecimiento y producción láctea disminuída (20).

Biología y Clasificación de las Leptospiras

Todos los serotipos presentan la misma morfología (3). Son espiroquetas de 7 a 40 micras de longitud y menos de 0.1 micras de ancho. Se umeven rápidamente con movimiento giratorio permaneciendo sus cuerpos algo rígidos. En la mayoría, ambos extremos son ganchudos, pero en algunas cepas los individuos son perfectamente rectos.

Bajo el microscopio electrónico se observa cual un cilindro protoplásmico rodeando un filamente central — el filamento axial. Están cubiertas por una membrana muy delgada y no tienen cilios, flagelos ni membrana ondalante (4).

El Grupo de Estudio sobre la Leptospirosis que se reunió en 1935 en el Instituto de Eigiene Tropical y Patología Geográfica de Amsterdam, estima que el mejor método de clasificación es el que utilizan actualmente muchos laboratorios importantes especializados en leptospirosis, y que consisten en subdividir al género Leptospira en diversos serotipos según los coracteres de sus aglutinógenos, determinados por reacciones de aglutinación y de absorción cruzada mediante sueros immunes de comejos. Así pues, se considera que, "dos cepas pertenecen a tipos serológicos distintos si después de absorción cruzada con cantidades adecuadas de antígeno heterólogo, el antisuero de cada cepa conserva regularmente el 10% o más del título obtenido en la cepa homóloga (27).

Las leptospiras se cultivam fácilmente en medio artificial. Se ham desarrollado numerosos medios para el cultivo de estos organismos, siendo éstos no más que variaciomes comparativamente pequeñas del medio original preparado por Nogachi en 1915 y en el cual Imada e Ido aislaron la primera cepa. Consisten estos medios en una solución tampón, a la cual se le puede o no adiciomar cierto tipo de peptona, 0.1 a 0.2% de agar en ciertos casos y suero de conejo hasta alcanzar la concentración de 5 a 10% del medio. El pH varía entre 7.2 y 7.8 (3).

El suero de conejo se puede reemplazar por suero bovino o preferiblemente ovino o equino, mo sin antes cotejarlos para la posible presencia de anticuerpos leptospirales (4).

Chang estudió los requisitos mutricionales de L. icterohaemorrhagiae y presentó evidencias de la utilización de proteínas o
aminoácidos, de su incapacidad para vivir sólo de carbohidratos y
la necesidad de suero para el cultivo artificial. Además estableció
que una temperatura entre 25-30°C era la óptima para la incubación
y que el pH y el Eh no sufrían cambios durante el crecimiento. El
mejor pH resulto el de 7.4 (3).

Parece ser que la supervivencia de <u>L. pomona</u> fuera del cuerpo animal está relacionada con la interacción de varios factores
siendo los principales la temperatura, el pli, la humedad, los varios
constituyentes del agua y del suelo y la presencia de otros microorganismos. Se ha encontrado que las temperaturas bajo 7-10°C y sobre
34-36°C, los pH bajo 6.0 o sobre 8.4 son detrimentales para <u>L. pomona</u>.

Los organismos sobreviven desde 30 minutos en un suelo aereado y seco; hasta 183 días en suelo supersaturado de agua, lo cual pone en evidencia la importancia de la humedad (26).

Kirschner estableció la propiedad leptospiricida de la leche al encontrar que las leptospiras sobreviven sólo varias horas en la leche integra y varios días en leche diluída (14).

Las leptospiras viven poco tiempo en la orina de pacientes de la enfermedad. La alta reacción ácida de la orina se considera como responsable de este efecto. Davidson y Smith informaron el hallazgo de anticuerpos líticos en la orina de ciertos casos. Montovami logró infectar trozos de diafragmas bovinos con una cepa de L. icterohaemorrhagiae que aisló de cobayos que murieron en la infección (3).

Epidemiología

Las leptospiras se establecen en los riñones de animales domésticos o salvajes después de infecciones agudas o inaparentes, de donde pueden ser expulsadas en la prima en forma crónica. Estos animales se consideran como vectores primarios ya que la infección es tras itida al hombre y otros animales (22).

Se considera a las mucosas nasales y bucales, la conjuntiva y la piel lacerada como las vías de penetración leptospiral, descartándose el tracto digestivo debido a la incompatibilidad de su pH (14).

Algunos investigadores han estudiado el papel desempeñado por ciertos artrópodos en la transmisión de la leptospirosis. Se ha establecido la persistencia de <u>L. pollona</u> durante 518 días en la garrapata <u>Ornitodorus turicata</u> y se consiguió la transmisión experimental de la enfermedad hasta 222 días después de la ingestión de la leptospira (25).

La importancia de las leptospirosis contraídas por contacto con aguas infectadas se ha enfatizado por nuchos de los primeros investigadores. En los Estados Unidos, nuchas epidemias en el hombre han ocurrido por inmersión en aguas contaminadas por el ganado. En hatos pastando en terrenos con superficies limitadas de agua, pero que recibían una alta cantidad de orina contaminada, se han observado epizoptias severas asociadas con L. pomona (18).

El manejo y las prácticas generales en una área determinada contribuyen a la incidencia y probable severidad de las leptospirosis. Los revolcaderos de cerdos, los lodazales, los comederos apretujados, las ocasionales innundaciones de los pastizales y la cría mixta de bovinos y suinos son factores obvios e importantísimos para la perpetuación de las leptospirosis (25).

Patogénesis

Cuando los organismos penetran en el cuerpo animal se multiplican rápidamente en el sistema circulatorio. En los bovinos, se
ha determinado que el período de incubación es de 3 a 7 días.(7).

Los anticuerpos aparecen generalmente a los 7 u 8 días del comienzo
de la enfermedad, llegando al título máximo a los 15-20 días. Pueden persistir desde unas pocas semanas hasta años (4).

Las Leptospiras nuestran preferencia por los tejidos renales de los huéspedes susceptibles, apareciendo la leptospiruria como consecuencia (19).

Sintomas

Little y Jaker reconocen dos formas de la enfermedad ambas producidas experimentalmente. En la forma severa de la enfermedad,

la muerte ocurre casi siempre entre 2 y 10 días. La aparición de la enfermedad es repentina o precedida por un día de inapetencia y una baja en el flujo lácteo. Hay fiebre; depresión, anorexia, disnea y una marcada reducción del flujo lácteo durante la fase aguda. La temperatura puede variar entre 103 y 107°F y persistir a través de toda la enfermedad. En los primeros días las mucosas visibles se pueden tornar ictéricas. La leche de todos los cuartos es sanguinolenta, con un tinte rosado, rojo o café, ocasionalmente conteniendo trazas de sangre. La flojedad de la ubre semejante a la de una vaca seca es de importancia diagnóstica. A veces se presenta hemoglobimuria exhibiendo la orina un color rojo brillante o café oscuro. Las vacas preñadas abortan temprano o durante la convalescencia sin presenter retención de placenta. Si el animal se recobra la convalescencia es prolongada debido a la fiebre contínua, debilidad, anemia y nefritis.

La forma leve es similar pero menos aguda, raramente fatal y de 2 a 4 días de duración. El animal puede aparecer normal excepto por una baja producción láctea o cambios en las características de la leche o de la orina. La leche puede ser sanguinolenta pero es más comúnmente amarilla o espesa. Los abortos son poco frecuentes. La hemoglobinuria puede ocurrir antes o después de la recuperación del animal (20). La pérdida de peso, que afecta sobre todo a los animales jóvenes, puede causar retardamiento del desarrollo (28). En algunas vacas, novillos y toros los únicos síntomas clínicos son la elevación de la temperatura y la hemoglobinuria (20).

Observaciones de campo han indicado que el aborto leptospiral ocurre en el último trimestre de la preñez (12),

Lesiones

En los exámenes post-mortem de bovinos se han observado hígados y riñones de tamaño y consistencia normales aparte de cierta ictericia y alguna hiperenia de la corteza renal. Microscópicamente se observan centros necróticos en el higado y algunas células hepáticas agrandadas, lo mismo que cierta vacuolización del citoplasma. En los riñones, los glomérulos se presentan moderadamente hiperémicos y los túbulos distendidos. Además se han observado leptospiras en tejidos renales y hepáticos con tinción argentica (3).

Diamostico

La sintonatología clínica de la leptospirosis bovina aunque puede ser altamente sugestiva, no es patognomónica de la enfermedad (17). La henoglobinuria l'eptospiral debe diferenciarse de la henoglobinuria bacilar, de brigen clostrídico, de ciertos envenenamientos y de la anaplasmosis. En caso de aborto deben excluirse la Brucelosis, la Vibriosis y la Tricomoniasis (15).

En el laboratorio se puede diagnosticar la Leptospirosis mediante la inoculación de animales experimentales con la sangre, leche, orina, o tejidos de animales sospechosos, por el aislamiento del organismo en medios especiales de cultivo, mediante el examen microscópico de secciones de tejidos teñidas con plata, por la demostración del organismo en sangre o tejido bajo el examen de campo oscuro y por la prueba serológica del animal sospechoso (20).

El cobayo y el hamster se usan generalmente en el aislamiento de <u>Leptospira</u>. La sangre, líquido espinal, orina o tejido macerado se inocula por vía subcutánea o intraperitoneal (4). Se pueden usar también pollitos de un día de edad con el mismo fin (13).

Para el cultivo del organismo, se pueden usar varios fluídos del cuerpo. De la sangre se puede aislar durante el período febril y de la orina se puede obtener después de la segunda semana de enfermedad. Para este fin se recomiendan los medios de Fletcher, Korthoff, Vervoot, Chang y Stuart (3).

Se han demostrado leptospiras en varios tejidos humanos, de hamsters, de bovino y de cobayos por medio de la técnica de anticuerpos fluorescentes (31).

Blenden et al encontraron que la fracción protefnica S91 de L. pomona producía reacciones específicas de hipersensibilidad en la piel (5).

Para la demostración de anticuerpos contre leptospira se han desarrollado diversos métodos siendo los principales la prueba de aglutinación con suspensiones de leptospiras muertas, aglutinación con leptospiras vivas, fijación del complemento, eritrosensitibilización y adhesión (3).

Tratamiento

Los antibióticos que se usan comúnmente en clínica poseen efectos leptospirostáticos in vitro, en concentraciones que pueden ser usadas en pacientes (33). Muchos veterinarios que han analizado clínicamente el efecto de la terapia con antibiótico en casos seve-

ros de Leptospirosis han concluído que los antibióticos son inefectivos, aunque algunos han informado que después del tratamiento con Penicilina, Estreptomicina o Aureomicina, desaparecen la fiebre, la
hemoglobinuria, la ictericia y otros síntomas (28),

La medicación temprana es de gran importancia porque se ha encontrado que las drogas son más efectivas en el comienzo de la enfermedad. Es necesario comenzar antes de que ocurra gran daño en los riñones. Con las sulfas se ha obtenido poco éxito. En el hombre se han usado con algún éxito los antisueros pero en los animales su uso no es económico (17).

Immización

En los Estados Unidos es práctica común la vacunación de los bovinos con bacterina para la Leptospirosia. En los primeros estudios los resultados fueron desalentadores, pero los hallazgos recientes se muestran como exitosos. Las vacunas más extensivamente usadas son los cultivos inactivados con formalina, antibióticos, por desecamiento y timerosal, estandarizados a una concentración específica. Se ha encontrado que estas vacunas producen resistencia que varía de seis a más meses (17).

Muchos veterinarios han informado que los brotes de abortos terminan a los 7 o 10 días post-vacunación. Entre 1956 y 1959 se encontró sin embargo, que los abortos continuaban hasta por cimeo semanas post-vacunación. Aparentemente las vacas que cortaren después de la vacunación estaban ya infectadas antes que la bacterina estimulara suficiente immunidad. Para reducir este defecto se

experimentó con una vacuna viva EP de L. pomona. En las pruebas se detectaron anticuerpos al cuarto día post-vacunación (en las bacterinas a los 10 días) y no se observaron efectos clínicos indeseables (18).

York et al observaron que 5 cc. de una vacuna contra L. ponona, fueron saficientes para proteger al ganado contra un inóculo que enfermó o mató a los controles. En el campo se notó baja incidencia de la enfermedad entre los vacunados, mientras que en los controles esta fue alta (35).

Control

La diversidad de los métodos usados y la manera empirica en que han sido desarrollados, parecen ser las características más conocidas del control de la leptospirosis. En la cadena de transmisión hay tres eslabones principales: el portador, las leptospiras fuera del cuerpo del huésped y el amimal susceptible. De ellos, ha sido el segundo en el cual se han usado más a menudo las medidas preventivas.

Algunos nétodos tratan directamente la destrucción de los organismos por agentes químicos, calor, o por desecación. Otros ham sido diseñados para prevenir el acceso de las leptos; iras al animal susceptible, evitando el contacto con las ratas, por medio de la segregación de los animales o por el uso de ropas protectoras. La eliminación de portadores y la inmunización de las poblaciones susceptibles han sido medidas de uso limitado (7).

MATERIALES Y METODOS

El presente estudio se llevó a cabo entre septiembre de 1963 y septiembre de 1964. Se visitaron 22 fincas en los departamentos de Boaco, Managua, Granada y Matagalpa y en cada finca se tomaron muestras de sangre de por lo men s un 10% del número de vacas en producción láctea.

Las muestras de sangre se tomaron mediante punción de la vena yugular. De cada animal se tomaron de 5 a 10 mls. de sangre, en tubos estériles.

En una hoja particular para cada finca se anotó el nombre de éste, departamento y zona en que estaba situada; el nombre del dueño de la misma y la identificación de cada animal sangrado, correspondiéndole un número a cada uno. Se anotó en cada caso la edad, la existencia o no de abortos recientes y la raza. Para la determinación de la raza los animales se dividieron en tres grupos: puros, mezclados y criollos, tomando como base los records de la finca ó las indicaciones del mandador ó los vaqueros.

Cuando no se trabajó en el departamento de Managua las muestras de sangre permanecieron refrigeradas hasta su transporte al laboratorio donde eran centrifugadas para la extracción del suero. Las muestras se sometieron a dos centrifugaciones a 3.010 rpm. la primera durante 5 minutos y la segunda durante 3 minutos. Si el suero no se utilizó inmediatamente se sometió a congelación para su conservación.

Para el análisis de los sueros se usó la prueba de aglutinación microscópica con antígenos vivos. Se utilizó una batería de 11 antígenos vivos procedentes del OMS/FAO Instituto Militar de Investigacio-

nes de Walter Reed. Estos eran: <u>L. bataviae</u>, <u>L. pomona</u>, <u>L. autumnalis</u>, <u>L. ballum</u>, <u>L. canicola</u>, <u>L. icterohaemorrhagiae</u>, <u>L. alexi</u>, <u>L. grippotyphosa</u>, <u>L. australis A</u>, <u>L. hardjo</u> y <u>L. hyos</u>.

Estas cepas fueron mantenidas en medio líquido de Stuart, transfiriéndolos de cada 5 a 7 días para evitar al máximo la formación de
"nidos de crías". En el transferimiento se inoculó un cc de cada cultivo a tubos con 9 cc. de medio líquido de Stuart. Luego se incubaron
de 4 a 6 días a 29°C, examinándolos al final de este período para observar el crecimiento y la densidad del cultivo. Los sueros se diluyeron en solución salina al 0.85% hasta alcanzar las siguientes concentraciones: 1/50, 1/200, 1/800, 1/3200.

Luego, se mezció 0.2 cc. de cada solución de suero con 0.2 cc. de cada antígeno en pocitos plásticos de incubación, quedando de esta manera los sueros, en diluciones de: 1/100, 1/400, 1/1600 y 1/6400.

Estas mezclas se sometieron a incubación durante una a tres horas a 37°C. Luego se examinaron, colocando en una laminilla de vidrio las dos diluciones más bajas, correspondientes a cada uno de los once antígenos y observando cada gota al microscopio de campo oscuro. Se usaron objetivos de 10X y oculares de 10X, sin cubreobjetos.

Al observarse aglutinación de más del 50% de las leptospiras por campo, en la dilución más baja, se le dió un título de 100. En caso de existir aglutinación en las dos diluciones más bajas, se observaron también las otras dos diluciones. El título final se tomó como el inverso de la última dilución donde ocurría eglutinación.

Para la obtención de la orina se lavaron bien los genitales externos de cada vaca con agua y luego se le dió un masaje en la región hasta lograr la micción. La orina se recogió directamente en tubos estériles de 50 cc. Inmediatamente, con una jeringa estéril se inocularon unas pocas gotas de orina en los siguientes medios: medio semisólido de Fletcher (Difco) con 10% de suero de conejo, medio semisólido de Fletcher con 10% de suero de caballo, medio semisólido de Chang con 10% de suero de conejo, medio semisólido de Chang con 10% de suero de caballo y medio semisólido Stuart (Difco) con 10% de suero de conejo. Asi mismo se inocularon cinco tubos de medio semisólido de Fletcher con 10% de suero de conejo, con las siguientes diluciones de orina en medio líquido de Stuart: 10⁻¹, 10⁻², 10⁻³, 10⁻¹⁴, y 10⁻⁵.

Una vez en el laboratorio se incubaron a 29°C y se examinaron tres veces cada 15 días bajo el microscopio de campo oscuro para observar el posible crecimiento de los microorganismos.

Cuando fue posible, cada muestra de orina se inoculó intraperitonealmente en dos hamsters jóvenes. La cantidad inoculada fue de 1 cc. por animal identificándolos por medio de cortes en las orejas y manteniêndolos en jaulas metálicas rotuladas.

Se les pesó diariamente hasta que exhibieron pérdidas significativas en peso, momento en el cual se sacrificaron. Se realizó
la necropsia estérilmente con el objeto de extraer el hígado, el riñón
o ambos.

Estos órganos fueron macerados y diluídos en medio líquido de Stuart, inoculándose esta suspensión en los mismos medios anteriormente mencionados para elcultivo de la orina. Se examinó una gota de la maceración para constatar la presencia de los organismos.

Los medios inoculados se incubaron a 29°C. y se observaron cada 15 días bajo el microscopio de campo oscuro, con cubreobjeto, para ver el posible crecimiento leptospiral (13).

Los datos obtenidos se tabularon y analizaron por medio de la prueba de Chi Cuadrada (9), para determinar si existían diferencias significativas entre los grupos en que se habían dividido los animales.

RESULTADOS Y CONCLUSIONES

En el cuadro I se resume el número de casos en cada departamento en que se demostró aglutininas para cualquiera de los serotipos empleados. Así mismo se incluye el porcentaje de infección para Leptospira. De él se puede inferir, que el departamento más atacado fue el de Managua con un 24.66% de infección siguiêndole el de Granada con 11.03%, luego Boaco con 9.37% y finalmente Matagalpa con 9.32% de infección.

El análisis estadístico de estos datos se presenta en el Cuadro II. Este análisis da como resultado un valor de 25.273 para Chi Cuadrada, que con tres grados de libertad y comparándolo con la Tabla de Chi Cuadrada (9), da una significancia al nivel de menos del 0.1% de probabilidad. De lo anterior se puede concluir que la Leptospirosis se halla presente en los cuatro departamentos estudiados y que la diferencia entre números positivos y negativos entre los departamentos son reales y estadísticamente significativas.

Se encontró que entre los grupos raciales en que se dividieron los animales, el de los puros presentó el más alto porcentaje de infección, 33.33%, luego los mezclados, con 11.88% y por último los criollos con 10.84% (Cuadro III).

Analizando los datos se encontró que las diferencias observadas son estadísticamente significantes a un nivel menor del 0.1% de probabilidad (Cuadro IV). De esto se puede concluir que hubo diferencias reales entre los diferentes grupos raciales estudiados.

Se encontraron aglutininas para todos los serotipos empleados y se estableció el siguiente orden de prevalencia: L. pomona 25,

L. canicola 23, L. hardjo 16, L. autumnalis 13, L. hyos 11, L. bataviae

9, L. grippotyphosa 6, L. ballum 3, L. alexi 2, L. icterohaemorrhagiae

1 y L. australis A 1.

Se halló que el título de 100 fue el más comúnmente encontrado, con 77 casos, luego 400 con 19 casos, siguiéndole 1600 con 4 casos y apareciendo solamente un caso con título de 6400. Este caso se debió a L. canicola. Este serotipo fue el que presentó los títulos más altos, pues además del anterior presentó cinco casos con un título de 400 y tres casos con un título de 1600. L. pomona también presentó un caso en que reaccionó a 1600 y cinco para 400. A 400 también reaccionaron L. australis A, L. hardjo y L. hyos. Los demás serotipos sólo reaccionaron a 100 (Cuadro V). Se puede concluir que L. pomona y L. canicola fueron los serotipos que se encontraron causando una infección actual, mientras que en la gran mayoría ésta era muy incipiente o vieja.

Observando el Cuadro VI se ve que el mayor número de casos positivos se encontró en animales que tenían 4 ó 5 años de edad y que el título de 100 se halló presente en casi todas las edades. Los títulos 400 y 1600 fueron más comunes en los animales más jóvenes y el de 6400 en un animal de seis años de edad. Se encontraron aglutininas contra Leptospira en todas las edades, excepto en las de 2, 8 y 10 años.

La relación entre la edad y los serotipos empleados en el estudio se muestra en el Cuadro VII. Analizándolo se puede concluir que los animales de edad media fueron los que exhibieron casi todos los serotipos, mientras que en los animales de edades extremas se presentaron pocos serotipos.

En el Cuadro VIII se ilustra la distribución de los serotipos de acuerdo a la raza. En él se puede ver que <u>L. autumnalis</u>, <u>L. ballum</u> y <u>L. alexi</u> se presentaron en una manera uniforme en los tres grupos, mientras que <u>L. bataviae</u> apareció mayormente en los mezclados y <u>L. pomona</u> en los criollos.

Se determinó que el serotipo predominante en Managua fue L. canicola, L. hyos en Granada y L. pomona en Matagalpa y Boado (Cuadro IX).

En la figura I se presenta gráficamente la frecuencia de los serotipos entre los casos positivos y en la figura II se puede ver la frecuencia de los 11 serotipos en los tres grupos raciales en que se dividieron los animales.

Todas las muestras de orina recolectadas de las vacas lecheras en producción resultaron negativas al cultivarlas.

RESUMEN

Se recolectaron muestras de sangre de 633 bovinos de los departamentos de Boaco, Managua, Matagalpa y Granada. Se examinó en ellas las presencia de aglutininas para la Leptospirosis por medio de la prueba de aglutinación microscópica.

Se encontró que en Boaco y Matagalpa prevalece <u>L. pomona</u>, en Managua <u>L. canicola</u> y L. hyos en Granada.

Se encontraron los siguientes porcentajes de infección: En Managua 24.66%, en Granada 11.03%, en Boaco 9.37% y en Matagalpa 7.69%.

CUADRO I

PORCENTAJE DE INFECCION

PARA 11 SEROTIPOS DE LEPTOSPIRA EN BOVINOS

DE LOS DEPARTAMENTOS DE BOACO, MANAGUA, MATAGALPA Y GRANADA

Departamentos	Casos Positivos	Total	5% de Positivos
Зоасо	14	160	9.37
Matagal pa	13	169	7.69
Managua	37	150	24.66
Granada	17	154	11.03
Totales	81	633	12.63

CUADRO II

CLASIFICACION DE LOS BOVINOS POR DEPARTAMENTOS Y NUMERO DE CASOS POSITIVOS O NEGATIVOS, CALCILO DE X²

Departamentos	Posit	ivos	Negativos					
De par canentos	0bservados	Esperados	0bservados	Esperados	Total			
Воасо	14	(a) 20,47	146	(b) 139.53	160			
Matagal pa	13	(c) 21,11	156	(d) 147,89	169			
Managua	37	(e) 19,19	113	(f) 130,81	150			
Granada	17	(g) 19.70	137	(h) 134.30	154			
Totales	81		552		633			

Contribución a X² Cálculo de los valores esperados $a = \frac{(14 - 20.47)^2}{20.47} = 2.045$ $a = 160 \times 81 = 20.47$ $b = \frac{(146 - 139.53)^2}{120.53} = 0.300$ b = 160 - 20.47 = 139.53 $c = \frac{(13 - 21.11)^2}{21.11} = 3.110$ $c = 81 \times 169 = 21.11$ $d = \frac{(156 - 147.89)^2}{147.89} = 0.444$ d = 169 - 21.11 = 147.89 $e = \frac{(87 - 19.19)^2}{19.19} = 16.530$ $e = 81 \times 150 = 19.19$ $f = \frac{(113 - 130.81)^2}{130.81} = 2.420$ f = 150 - 19.19 = 130.81 $g = \frac{(17 - 19.70)^2}{10.70} = 0.370$ $g = 81 \times 159 = 19,70$ $h = \frac{(137 - 134.70)^2}{134.30} = 0.054$ h = 154 - 19.70 = 134.30

G.L. = 3

 $X^2 = 25.273$

CUADRO III

PORCENTAJES DE INFECCION PARA LEPTOSPIRA SEGUN LOS DIFERENTES GRUPOS RACIALES

Grupos Raciales	Porcentaje de Infección
Criollos	10.84
Mezclados	11.88
Puros	33,33

CUADRO IV

DISTRIBUCION DE ANIMALES DE ACUERDO A LA RAZA Y POSITIVIDAD O NEGATIVIDAD DE LA REACCION PARA LEPTOSPIRA,

COMPUTO DE X² DE ESOS DATOS

Razas	Posit	ivos	Negat	ivos	Total
	Observados	Esperados	0bservados	Esperados	
Criollos	27	(a) 31.86	222	(b) 217,14	249
Mezclados	41	(c) 44.15	304	(d) 300.85	345
Puros	13	(e) 4.99	26	(f) 34.01	39
Totales	81		552		633
Cálculo de lo	s valores es	perados	Contribució		
$a = 81 \times 633$	249 = 31.86		a = (27 - 3)	$\frac{31.86)^2}{1.86}$ =	0.741
b = 249 -	- 31.86 = 217	.14	b = (222	$\frac{-217.14)^2}{17.14} =$	0,608
$c = \frac{81 \text{ x}}{633}$	345 = 44.15		c = (41 - 4)	44.15) ² =	0.224
d = 345 -	44.15 = 300	.85	d = <u>(304</u>	$\frac{-300.85)^2}{300.85} =$	0.033
e = 81 x	39 = 4.99		e = <u>(13 -</u>	$\frac{4.99)^2}{.99} =$	12.860
f = 39 -	4.99 = 34.01		f = (26 - 3)	$\frac{34.01)^2}{4.01}$ =	1.890
$G_{\bullet}L_{\bullet} = 2$			$X^2 =$		15.856

CUADRO V
FRECUENCIA DE LOS TITULOS EN LOS DIFERENTES SEROTIPOS

Serotipos	100	400	1600	6400	Total
Bat	9	0	0	0	9
Pom	19	5	1	0	25
Aut	9	4	0	0	13
Bal	3	0	0	0	3
Can	14	5	3	1	23
Ictero	1	0	0	0	1
Alexi	2	0	0	0	2
Grippo	6	0	o	0	6
Aus. A	1	0	o	0	1
Hardjo	11	5	0	0	116
Hyos	8	3	0	. 0	11
Serotipo Total	77	19	4	1	110

CUADRO VI

DISTRIBUCION DE LOS TITULOS POSITIVOS PARA LEPTOSPIRA

DE ACUERDO A LA EDAD DE LOS ANIMALES EN ESTUDIO.

Edades en Añ	os 100	400	1600	6400	Total
2	0	0	0	o	0
3	6	3	2	0	11
4	32	12	1	0	45
5	22	1	0	0	23
6	7	3	0	1	11
7	9	0	1	0	10
8	0	0	0	0	0
9	1	1	0	0	2
10	0	0	0	0	0
Total	77	20	4	1	112

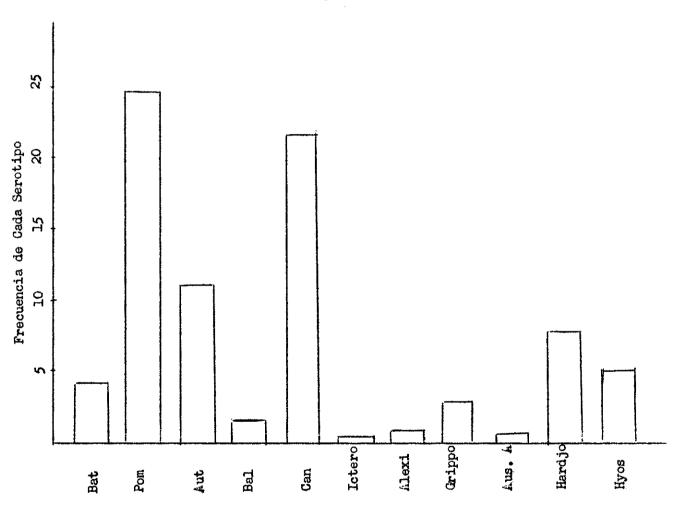
CUADRO VII

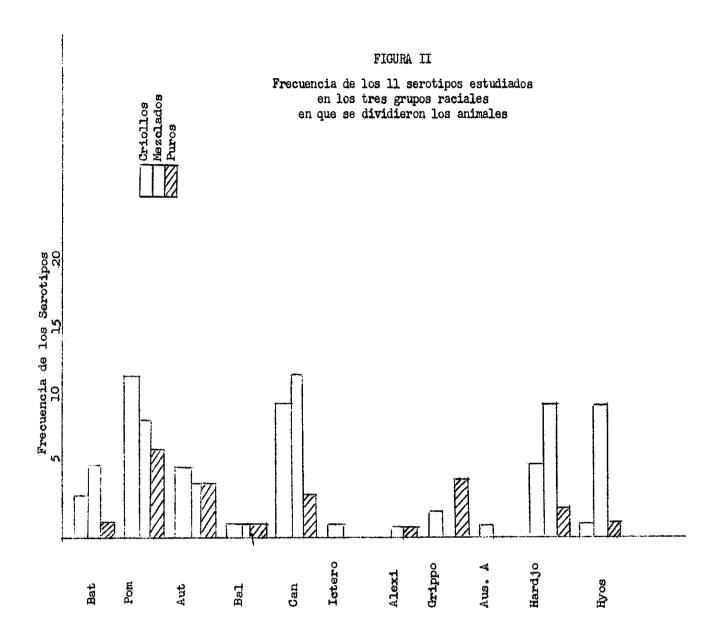
DISTRIBUCION DE LOS SEROTIPOS POSITIVOS
EN DIFERENTES EDADES DE LOS ANIMALES ESTUDIADOS

Años	Número de Animales	Bat	Pom	Aut	Bal	Can	Ictero	Alexi	Grippo	Aus	Hardjo	Hyos	Total
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	79	0	2	1	0	3	0	1	0	0	3	3	13
4	164	4	12	5	1	9	0	1	5	1	7	3	49
5	135	4	5	5	0	5	1	0	I	0	2	2	24
6	125	0	4	1,	1	3	0	0	0	0	2	1	12
7	57	1	1	1	1	3	0	0	0	0	1	2	10
8	28	0	0	0	0	0	0	0	0	0	0	0	0
9	30	0	1.	0	0	0	0	0	0	0	1	0	2
10	14	0	0	0	0	0	0	0	0	0	0	0	0
Total	633	9	25	13	3	23	1	2	6	1	16	11.	110

CUADRO VIII

DISTRIBUCION DE SEROTIPOS ESTUDIADOS DE ACUERDO A LA RAZA


Razas	Bat	Pom	Aut	Bal	Can	Ictero	Alexi	Grippo	Aus	Hardjo	Hyos	Total
Criollos	3	11	5	1	9	1	0	2	1	5	1	39
Mezclados	5	8	4	1	11	0	1	0	0	9	9	48
Puros	i	6	4	1	3	0	1	4	0	2	1	23
Total	9	25	13	3	23	1	2	6	1	16	16	110


CUADRO IX

DISTRIBUCION DE LOS DIFERENTES SEROTIPOS SEGUN DEPARTAMENTOS

Departamento	Bat	Pom	Aut	Bal	Can	Ictero	Alexi	Grippo	Aus	Hardjo	Hyos	Total
Boaco	1	6	0	0	3	1	0	1	1	2	0	15
Matagalpa	3	4	3	0	0	0	1	0	0	3	2	16
Managua	2	12	8	3	19	0	1	5	0	6	2	58
Granada	3	3	2	0	1	0	0	0	0	5	7	19
Total	9	25	13	3	23	1	2	6	1	16	11	110

FIGURA I
Número de positivos en cada serotipo específico

APENDICE

Finalizados los trabajos de esta tesis y habiéndose elaborado todos los cuadros representativos, se presentó en el Laboratorio de Leptospirosis el Dr. Maximiliano Nogales requiriendo un diagnóstico de Leptospirosis en 11 terneros, de la hacienda San Juan, departamento de Managua, por presentar fiebre, enflaquecimiento y palidez de las mucosas.

Exámenes serológicos practicados en los 11 terneros presentaron resultados positivos con títulos altos para <u>L. pomona</u>, <u>L. autum-</u> nalis y <u>L. hardjo</u> en 9 animales.

El Dr. Lawrence G. Clark, Jefe de la Misión Científica de la Universidad de Pennsylvania y el autor de la tesis, se presentaron en la mencionada hacienda, al objeto de recolectar orina e inyectar en hamsters, intraperitonealmente, la cantidad de 1 cc.

De dos Hamsters se ais16 <u>Leptospira</u>, los cuales correspondían a los terneros 3-Z-35 y 4147 respectivamente.

El número 3-Z-35 presentó un título serológico de 6400 para L. pomona y el 4147 fue seronegativo, lo cual parece indicar que no se habían formado anticuerpos al momento de obtener la muestra.

Es la primera vez en Nicaragua, que se ha aislado <u>Leptospira</u> en ganado vacuno. Este hecho es el que me ha impulsado a adicionar este apéndice a mi trabajo de tesis.

BIBLIOGRAFIA

- 1/ Acha, P. N., Alexander, A. D., Sontamaría, G., Rubin, E. L. and Yager, R. R.: Serological Studies on Leptospirosis in Guatemala. An. J. Trop. Med. and Hyg., 12, (1963): 580-585.
- 2/ Alexander, A. D.: La Distribución de la Leptospirosis en América Latina. Bol. Of. San. Pan., 69, (1960): 149-164.
- Alston, J. M. and Broom, J. C.: Leptospirosis in Man and Animals. E & S. Livinsgton Ltd. (1958): 367 pp.
- Babudieri, D.: Laboratorio Diagnosis of Leptospirosis. Bull. World Hith. Org., 24, (1961): 45-58.
- 5/ Blenden, D. C., Goldberg, H. S. and Kuppuswany, P.: Studies on a Skin Test for Leptospirosis. A.J.V.Z., 22, (1961): 1081-1084.
- 6/ Blood, B., Sayfres, B. and Moyer, V.: Infección Natural de L. pomona en el Gesayo de las Pampas. El Veterinario y la Industria, 1, (1964): 53-55.
- 7/ Broom, J. C.: Prophylaxis and Control of the Leptospiroses. Symposium on the Leptospiroses. Medical Science Publication No. 1. United States Government Printing Office, Washington, D. C.; (1953): 126-192.
- S/ Coffin, D. L., and Giampolo, M.: Detection of Leptospires by Fluorescent Antibodies. A.J.V.R., 23, (1962): 159-164.
- 9/ Croxton, F. E.: Elementary Statistics with Applications in Medicine and the Biological Sciences. Bover Publication. Inc. New York., (1953): 376 pp.
- 10/ Cruz, G.: Contribución al Estudio de la Leptospirosis Bovina en Nicaragua. Tesis. Escuela Nacional de Agricultura y Ganadería, Managua, Nicaragua. (1964): 31 pp.
- Bguaras, J. L.: Informes al Ministerio de Agricultura y Ganadería de Nicaragua. Unidad Móvil Campaña de la Brucelosis. (1961).
- 12/ Fennestad, K. L. and Borg-Petersen: Fetal Leptospirosis and Abortion in Cattle, J. Inf. Dis., 102, (1958): 227-236.
- Galton, M., Menges, D. W. and Shotts, E. B.: Leptospirosis.

 Methods in Laboratory Diagnosis. U. S. Department of Health,
 Education and Welfare. Public Health Service, Communicable
 Disease Center. Atlanta, Ga. (1960): 31 pp.

- 14/ Galton, M., Menges, R. W. and Steele, J. H.: Epidemiological Patterns of Leptospirosis. Annals of the New York Academy of Science., 70, (1958): 427-444.
- Gothenour, W. S. and Yager, B. H.: Manifestation of Bovine Leptospirosis. Vet. Med., 43, (1953).
- 16/ Hagan, W. A. y Bruner, D. W.: Enfermedades Infecciosas de los Animales Domésticos. Segunda Edición en Español. Prensa Médica Mejicana. (1961): 633 pp.
- 17/ Hanson, L. E.: Hovine Leptospirosis. A Review. J. Dairy Sci, 43, (1960): 453-462.
- 18/ Kenzy, S. G., Gillespie, R. W. H. and Ringen, L. M.: Problems in Treatment and Control of Leptospirosis. JAVMA., 136 (1960): 253-255.
- 19/ Kenzy, S. G., Keown, G. E., Okazaki, W., Gillespie, B.W.H. and Lingen, L. M.: Betection of Viable L. pomona in Bovine Kidneys After Leptospiruria Mad Apparently Ceased. Vet. Med., 53 (1958): 647.
- 20/ Little, L. D. and Baker, J. A.: Leptospirosis in Cattle. JANVA., 116, (1950): 105-110.
- Little, D. B., Beck, J. D. and McCahon, J. V.: An Outbreak of Bovine Leptospirosis in Ponnsylvania. Vet. Med., 45, (1950): 104.
- Menges, R. W.: Control of Leptospirosis in Man and Animals. Public Health Reports, Public Health Service. United States Department of Health, Education, and Welfare, 74, (1959): 149-152.
- 23/ Ministerio de Agricultura y Janadería de Micaragua. Informe a la OLLSA. Archivos. (1962)
- Morse, E. V.: New Concepts of Leptospirosis in animals. JAVMA., 136, (1960): 241-246.
- Morse E. V.: The Economic Significance of Leptospirosis in Domestic Amimals. AVAL. Proceeding Book. Ninety second Annual Meeting. (1952): 162-167.
- Okazaky, W. and Bingen, L. M.: Some Effects of Various Environmental Conditions on the Survival of L. pomona, AJVR, 18 (1957): 219-223.

- Organización Mundial de la Salud.: Diagnóstico de la Leptospirosis y Tipificación de las Leptospiras. Serie de Informes Técnicos, 113, (1957): 12 pp.
- 28/ Reinhard, K. R.: Bovine Leptospirosis. Symposium on the Leptospiroses. Medical Sciences Publications No. 1. U.S. Gov. Printing Off. Washington, D. C. (1953): 126-139.
- 29/ Reinhard, K. R.: Present Knowledge and Concepts of Leptospiroses in Farm Animals. JAWMA, 123, (1953): 487-493.
- Santa Rosa, C. A., et al.: Leptospirose Bovine. Inquerito Serologico Na Regiao de Campinhas. Arquivos do Instituto Biologico, 28, (1961): 155-164.
- Santa Rosa, C. A., Pestana de Castro, A. F. e Troise, C.:
 Isolam nto de Leptospira pomona de suíno en Sao Paulo. Arq.
 Inst. Biol., 29, (1962): 165-174.
- Smadel, J. E.: The Theraphy of Leptospirosis. Symposium on the Leptospiroses. Med. Sci. Pub. No. 1. U.S. Gov. Printing Off., Washington, D. C., (1953): 202-210.
- 33/ Steele, J. H.: Epidemiology of Leptospirosis. JAVMA., 136, (1960): 247-252.
- Van Ness and Manthel, C. A.: Lep ospirosis. Animal Diseases. The Year Book of Agriculture. U.S. Gov. Printing Off., (1956): 226-232.
- York, C. J., Johnston, R. V. and Robinson, V. B.: The Use of Vaccine in the Control of Leptospirosis in Cattle and Swine, AVMA. Proceeding book. Ninety Second Annual Meeting, (1955): 169-171.