TRABAJO DE DIPLOMA

Título

Evaluación de una mezcla de cepas de *Rhizobium leguminosarum* bv *phaseoli* en la inoculación de frijol común (*Phaseolus vulgaris* L.) en comunidades de Nueva Guinea, Nicaragua, en el ciclo de apante (1998-1999)

Autores

Br. Tupac Ramón Serrano Jiménez.
Br. Mario Alberto Sánchez Mercado.

Asesor

Msc. Gustavo Valverde Reyes

Managua, Nicaragua, Septiembre del 2000
Universidad Nacional Agraria
Facultad de Recursos Naturales y del Ambiente

Trabajo de Diploma

Título

Evaluación de una mezcla de cepas de *Rhizobium* bv *phaseoli* en la inoculación de frijol común (*Phaseolus vulgaris* L.) en comunidades de Nueva Guinea, Nicaragua en el ciclo de apante (1998-1999)

Autores
Br. Tupac Ramón Serrano Jiménez.
Br. Mario Alberto Sánchez Mercado.

Asesor
Msc. Gustavo Valverde Reyes

Presentado a consideración del honorable Tribunal Examinador como requisito final para optar al título de Ingeniero Agrónomo con orientación en Suelos y Agua.

Managua, Nicaragua, Septiembre del 2000.
Dedicatoria

A mi Madre Violeta Jiménez Córdoba, gracias a tu apoyo, cariño y carácter, fue posible este logro, que también es tuyo.

A mi abuelita Elvia, por toda su capacidad de dar amor.

A mi abuelo Pastor Jiménez y mi padre Ramón Serrano (q.e.p.d). Gracias por luchar buscando un futuro mejor.

A mi Tía Frances Córdoba, mi querida Paquita.

A mis hermanos Armando y Eloisa. Quienes son mis mejores amigos y consejeros.

A mis Tías:

A mis Tíos:

Ivan Jiménez Córdoba, Pastor Jiménez Córdoba

Gracias por sus continuas demostraciones de unidad y amor.

A mis primos y primas: Tommy, la China, Alejandro, Janet, Elvia, Tamara, Marie Hebe, Daniela, Maria Gabriela, Totito, William, Víctor, Roberto, Sandrita, Sadam.

A mis Tíos:

Tomas Elvir, Diego Peralta, William Villagra, Félix Sánchez, Roberto Guillén, Benjamín Linarte, Auxiliadora Cruz.

A mis amigos: Ramses Rivas, Manolo Bucardo, Cesar Mairena, Javier Fonseca, Ofelia Marín, etc.

Con mucho amor, a mi novia Yaosca Figueroa Díaz.
Dedicatoria

A mis padres:

Carlos Alberto Sánchez
Maria Teresa Mercado

A mis hermanos:

Noel Antonio Sánchez Mercado
Zulema del Carmen Sánchez Mercado
Giselle de los Angeles Sánchez Mercado
María Johana Sánchez Mercado
Carlos Alberto Sánchez

Quienes con su apoyo económico y moral contribuyeron e mi formación profesional.

A mi hija:

Natalie Melinda Sánchez Solís

Quien paso a ser un motivo más para mi superación dentro de la sociedad.
Agradecimiento

A dios por darme la vida.

A mi madre Violeta Jiménez, sin su presencia mi título no habría sido posible

A mi tía Alma Rosa, cuyos valiosos aportes fueron decisivos en mis aspiraciones.

A todos mis tíos Ivan, Pastor, Pinita, Chilo, Chayo, Hebe, Sandra.

Al Msc. Gustavo Valverde, por su asesoría en este trabajo de tesis.

A los Ingenieros: Bismark Mendoza, Leyla Alemán, Adolfo Gonzáles y Javier Lopez por el tiempo y sus valiosas contribuciones al enriquecimiento de este trabajo.

A los Ingenieros: Leonardo García, Edmundo Umaña, Guillermo Reyes, Francisco Salmeron, Matilde Somarriba, entre otros, quienes aportaron con su excelente capacidad científica en mi formación profesional.
Agradecimiento

- A dios, por haberme brindado la vida para poder realizar los estudios.
- Al Lic. Carlos Barahona, quien me apoyó económicamente y contribuyó para que culminara mis estudios universitarios.
- Lic. Gustavo Valverde, por habernos asesorado en este trabajo de tesis.
- Ingenieros:
 - Henry Pedroza
 - Adolfo González
 - Bismarck Mendoza

Los que aportaron de su capacidad profesional, para el enriquecimiento de este trabajo.

- Ingenieros:
 - Matilde Somarriba
 - Guillermo Reyes
 - Leonardo García

Y otros, quienes con su empeño en la enseñanza formaron parte en mi formación profesional.
3.1.3 Zonificación ecológica .. 20
3.1.4 Precipitación ... 21
3.1.5 Características de los suelos ... 21
3.1.6 Usos del suelo ... 22
3.1.7 Uso potencial del suelo .. 22
3.1.8 Características de las fincas ... 23
3.2 Análisis físico-químico del suelo 24
3.3 Material biológico utilizado .. 24
3.4 Descripción de tratamientos ... 24
3.5 Variables medidas .. 25
 3.5.1 Número de nódulos .. 25
 3.5.2 Peso seco de nódulos .. 25
 3.5.3 Densidad poblacional ... 25
 3.5.4 Número de vainas por planta 26
 3.5.5 Granos por vaina ... 26
 3.5.6 Rendimiento ... 26
3.6 Análisis estadístico ... 26
 3.6.1 Prueba "t" de student .. 26
3.7 Análisis económico .. 27
 3.7.1 Rendimiento medios (kg/ha) 27
 3.7.2 Rendimiento ajustado .. 27
 3.7.3 Costos que varían .. 27
 3.7.4 Precio de campo (del producto) 28
 3.7.5 Beneficio bruto de campo ... 28
 3.7.6 Beneficio neto .. 28
3.8 Percepción de los agricultores sobre el inoculante 28
3.9 Manejo agronómico ... 29
4. RESULTADOS Y DISCUSION .. 30
 4.1 Rendimiento ... 30
Nombre de productores ... 30
 4.2 Número de nódulos por planta 31
 4.3 Peso seco de nódulos (en mg) 33
 4.4 Número de vainas por planta 34
 4.5 Número de granos por vaina 36
 4.6 Densidad poblacional (miles / ha) 37
NS: no significativo ... 39
4.7 Análisis económico de la tecnología evaluada 40
 4.7.1 Resultados económicos obtenidos 40
Productor ... 42
 Parcela ... 42
 5.8 Sondos sobre la percepción del productor al inoculante 47
5. CONCLUSIONES ... 51
6. RECOMENDACIONES .. 52
7. BIBLIOGRAFÍA ... 53
ANEXO
Índice de cuadros

1. Requerimientos climáticos para el frijol ... 5
2. Requerimientos edáficos para el frijol ... 5
3. Clasificación de los Rhizobium según los grupos de inoculación cruzada 7
4. Requerimiento nutricional promedio para variedades robustas de frijol en climas medios y calidos .. 18
5. Rendimiento del cultivo del frijol (kg/ha) establecido en las parcelas con semillas sin inoculante (ssi) e inoculada (sci) en Nueva Guinea, Nicaragua, en la época de apante (1998-1999) .. 30
6. Efecto de la inoculación con una mezcla de Rhizobium sobre el número de nódulos, peso seco de nódulos, densidad poblacional, número de vainas por planta, número de granos por vaina y rendimiento .. 39
7. Costos variables en córdobas (C$) por hectárea (ha) .. 40
8. Presupuesto parcial general, en córdobas (C$) por hectárea (ha), en el estudio realizado en Nueva Guinea, época de apante 1998-1999 .. 41
9. Presupuesto parcial por agricultor, en córdobas por hectárea, en el municipio de Nueva Guinea, época de apante 1998-1999 .. 42
10. Continuación presupuesto parcial por agricultor, en el municipio de Nueva Guinea, época de apante 1998-1999 ... 43
Indice de figuras

1. Precipitación mensual ocurrida durante el periodo de validación, en la época de apante de 1998-1999, en la zona de Nueva Guinea. ... 21
2. Respuesta lineal para frijol, sin inoculante e inoculado en el municipio de Nueva Guinea, época de apante (1998-1999) ... 31
4. Peso seco de nódulos por planta para frijol (Phaseolus vulgaris L.) inoculado y sin inocular, en el municipio de Nueva Guinea, época de apante (1998-1999)34
7. Densidad poblacional para frijol común (Phaseolus vulgaris L.) para las parcelas inoculadas y sin inocular, en el municipio de Nueva Guinea, época de apante (1998-1999) ..38
8. Percepción que los productores expresaron sobre el crecimiento del cultivo en el municipio de Nueva Guinea, época de apante 1998-199948
10. Rendimiento del frijol por parcela, municipio de Nueva Guinea, época de apante 1998-1999 ...49
11. Eficiencia del inoculante, en el municipio de Nueva Guinea, época de apante 1998-1999 ... 50
Resumen

El frijol común (*Phaseolus Vulgaris* L.), es uno de los principales componentes en la alimentación de las familias campesinas; sin embargo el rendimiento por unidad de superficie es bajo, creando desabastecimiento e inestabilidad en el precio. Ante esta limitante la Universidad Nacional Agraria en conjunto con la secretaría del programa PL-480 evaluó una mezcla de cepas de *Rhizobium* en las zonas de Boaco, Pantasma y Nueva Guinea, en la época de apante de 1998-1999, con el objetivo de conocer el rendimiento del frijol con el inoculante en comparación con el manejo tradicional de los productores locales. El objetivo general de la evaluación consistió en evaluar los rendimientos de frijol común mediante el uso de una mezcla de cepas de *Rhizobium leguminosarum* bv *phaseoli* como inoculante en diversos sitios del Municipio de Nueva Guinea, en la época de apante (1998-1999). El procesamiento y análisis de datos se efectuaron a través de un análisis estadístico “t” de student y presupuesto parcial. Los criterios de aceptación se recopilaron por medio de encuestas. Los resultados indican que con la mezcla de cepas de *Rhizobium* se obtuvo una mayor producción de frijol común teniendo como rendimiento promedio 968 kg/ha en las 9 fincas, comparado con el rendimiento promedio de 787 kg/ha obtenido en las áreas donde no se utilizó el inoculante. El análisis estadístico confirmó significancia a favor de la parcela inoculada produciendo rendimientos superiores a la parcela testigo. El presupuesto parcial demostró que al introducir el inoculante se daría una Tasa de Retorno Marginal de 13.00 córdobas por cada córdoba invertido en la tecnología evaluada y una diferencia de producción ajustada (5%), de 120.9 kg / ha a favor de la nueva tecnología. En conclusión con el presente trabajo se puede establecer que el cultivo de frijol en Nueva Guinea en la época de Apante responde al inoculación con una mezcla de cepas de *Rhizobium leguminosarum* bv *phaseoli*, Los productores de la zona, a través de una encuesta mostraron mayor interés por el inoculante, por ser una alternativa de bajo costo, de fácil manejo y a demás, mejorará los rendimientos del frijol.
ABSTRACT

Common beans is one the most important components in the health of country families. Even though they grow their beans, they don’t produce a lot. Since they don’t produce as much, the prices in the market are instable. So the National University of Agronomy together with the program PL-480 evaluated a mix of stock of Rhizobium on the country places of Boaco, Pantasma and Nueva Guinea in the time period of Apante of 1998-1999. The aim of this evaluation consisted in valued the performance of common bean by use of the mix of stock of Rhizobium leguminosorum bv phaseoli as such as inoculate on several places of Nueva Guinea in the time period of Apante (1998 to 1999). We selection 2 plot of land for country estate, one plot of land was inoculated and other wasn’t inoculate. The process was realized in 9 country estate. The accepted criteria was collected thought surveys. The dates were analyzed thought statistics analysis student “t” and partial reckon up. The results showed that with mix of stock of Rhizobium leguminosarum bv phaseoli, were able to produce a bigger production of common beans. Have been as an average performance 968 kg/hectare in the country estates, it has been comparator with the average performance of 787 kg/hectare obtained in the areas weren’t inoculate. The statistic analysis confirmed the significant increased of the inoculate plot of land produced higher performance to the plot of land referent. The partial reckon up demonstrated that the introduction of inoculate will give a marginal return rate estimate of 13.00 cordobas per each cordoba invested in the evaluate technology and one different adapting of production (5%), of 120.9 kg/hectare. In this work we can establish that beans’ cultivation on Nueva Guinea in the period of Apante response an inoculation with a mix of stock of Rhizobium leguminosarum bv phaseoli. The zone’s farmers through of the survey demonstrated more interest for the inoculate, because of it for been alternative with lower cost, easy to use and improve the beans’ performance.
1. INTRODUCCION

Las leguminosas (especies de leguminosae) se encuentran entre los cultivos más importantes del mundo, suministran alimentos nutritivos para el hombre y los animales. Además, de ser ricas en proteínas, las leguminosas son también ricas en minerales para los huesos y en vitaminas esenciales para la buena salud (FAO, 1985a).

Las plantas leguminosas como frijol común puede obtener la mayor parte del nitrógeno que necesitan, de la amplia disponibilidad de nitrógeno gaseoso del aire y fijarlo a través de unas estructuras llamadas nódulos, el cual es posteriormente utilizado durante el proceso de floración y llenado de vainas. Para tal efecto las leguminosas trabajan en simbiosis con algunas bacterias (Rhizobios) en los nódulos de las raíces, donde se desarrollan y se convierten en pequeñas fábricas en las raíces de la planta (FAO, 1985a). En los suelos cultivados con frijol en Nicaragua, existen poblaciones nativas de Rhizobium, pero esta población podría ser ineficiente, lo que junto a prácticas culturales, como el uso de fertilizantes nitrogenados al momento de la siembra y el uso de variedades criollas (precoces), reducen el efecto beneficioso de la nodulación (Llano, 1999)

Las leguminosas también dejan nitrógeno en el suelo que pueden ser utilizados por los siguientes cultivos, puesto que el nitrógeno es por lo general el elemento más limitante en el suelo, para la producción de alimentos. La habilidad de las leguminosas para fijar nitrógeno está aumentando su importancia en la agricultura mundial (FAO, 1985a)

Los suelos agrícolas cultivados con frijol son deficientes en nitrógeno (N) y fósforo (P), elementos indispensables para una producción rentable. Esta deficiencia se debe al laboreo continuo y a la lixiviación de nutrientes por el uso inadecuado de los suelos. Los agricultores productores de grano, como, frijol, utilizan poco o ningún insumo para la producción, a pesar de utilizar variedades mejoradas con alta capacidad de respuesta a insumos (Llano, 1999)

El rendimiento productivo del frijol es variable. Existen zonas donde se producen menos de 645.45 kg/ha. Debido a una serie de limitaciones, tales como precipitaciones irregulares, altos costos de insumos y poco acceso a tecnologías, poca disponibilidad de semilla mejorada. Son factores que no incrementan la producción de éste cultivo.
En Nicaragua el frijol es consumido directamente por el 86% de los hogares nicaragüenses representando el 25% de ingesta de proteínas a escala urbana y el 38% en el ámbito rural (MAG- FOR, 1997).

Se plantea que una de las alternativas del productor para no depender de los fertilizantes nitrogenados, es el uso de la tecnología de inoculación en frijol. Según los resultados obtenidos en Nicaragua reflejan resultados positivos en las mejoras de los rendimientos (Sánchez, 1998).

El inoculante es una combinación de cepas de Rhizobium (cultivados en laboratorios), con un soporte adecuado como la turba, composte o cachaza. Al agregar este inoculante a la semilla se hace efectiva la inoculación.

Este trabajo tiene como propósito incrementar la producción y productividad de frijol, mediante el uso de la tecnología de inoculación, suministrándole a la semilla, inoculante con cepas de Rhizobium eficientes para incrementar los rendimientos con prácticas culturales de bajos costos, sin afectar el medio ambiente, y sostenible para agricultores de escasos recursos económicos.

El estudio de evaluación se realizó en Nueva Guinea en la época de apante del año 98 - 99, para conocer el grado de efectividad del inoculante en esta zona, donde la producción de frijol es un rubro importante para los agricultores locales, por lo que se hace necesario hacer pruebas de campo en un área o entidad biofísica bajo las condiciones de la unidad de producción, en que se confirma o verifica una opción o alternativa tecnológica, para tal efecto existen, productores asesorados por el INTA, UNAG, PRODES y Polos de Desarrollo, con los que se llevó a cabo dicho trabajo.
1.1 OBJETIVOS

1.1.1 Objetivo general

- Evaluar el incremento de la producción del frijol común, mediante el uso de inoculante a base de una mezcla de cepas de Rhizobium, al nivel de finca en el municipio de Nueva Guinea en la época de apante 1998-1999.

1.1.2 Objetivos específicos

1. Determinar a través de análisis descriptivos y estadístico el incremento del rendimiento en la localidad.

2. Realizar un análisis económico para determinar los beneficios del uso de la nueva tecnología en la zona de las parcelas de validación.

2. REVISIÓN DE LITERATURA

2.1. Frijol común

Especie anual, originaria de Asia, planta anual, con sistema radical bien desarrollado y de crecimiento muy rápido, compuesto de una raíz principal con muchas y muy ramificadas raíces secundarias, tallos delgados y débiles, las semillas de esta planta tienen propiedades valiosas, principalmente por su elevada proporción de proteínas, mayor que cualquier otro producto vegetal y que casi se aproxima al de la carne. El hecho de que, además, una vez maduras pierden fácilmente humedad, pudiéndose almacenar sin peligro gracias a esta propiedad y a la presencia de tegumentos bastante impermeables, las convierte en plantas de cultivo de enorme interés. También tienen buena cantidad de materias minerales y vitaminas, principalmente de los grupos A y B, su valor energético es muy elevado. Aunque la primordial utilidad de las leguminosas de grano reside en sus semillas, estas plantas también tienen múltiples empleos en agricultura, por ejemplo, como abono verde, forraje y ensilado. Por otro lado tienen la propiedad de enriquecer en nitrógeno el suelo donde se cultivan, producto de la simbiosis con bacterias fijadoras de este elemento (FAO, 1969).

En Nicaragua el frijol es un componente básico en la dieta alimenticia, constituye un valioso aporte energético y proteico (MAG, 1991).

La producción de frijol se localiza principalmente en el sector campesino de escasos recursos, cuyo manejo tecnológico en su mayor parte es tradicional, o sea de baja tecnificación. Históricamente la productividad del frijol ha sido baja y la producción nacional no ha logrado satisfacer la demanda interna (INTA, 1995).
2.1.1 Condiciones edafoclimáticas

2.1.1.1 Clima

El frijol se cultiva bajo un sinnúmero de condiciones ambientales, pero ciertas variedades se adaptan mejor a condiciones de crecimiento específicas de algunas áreas de producción, sin embargo existen rangos que delimitan las áreas útiles desde el punto de vista agronómico. (CIAT 1980).

Cuadro 1. Requerimientos climáticos para el frijol común.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Altura (mm)</th>
<th>Temp.°C</th>
<th>pp. (mm)</th>
<th>Período (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Óptimo</td>
<td>450-800</td>
<td>17-24</td>
<td>200-450</td>
<td>6</td>
</tr>
<tr>
<td>Bueno</td>
<td>200-450</td>
<td>17-20</td>
<td>450-700</td>
<td>4</td>
</tr>
<tr>
<td>Marginal</td>
<td>100</td>
<td>-17,+27</td>
<td>-200,+700</td>
<td>-4,+6</td>
</tr>
</tbody>
</table>

2.1.1.2 Edafología

En Nicaragua el frijol se cultiva en diferentes tipos de suelos con diferentes deficiencias y toxicidad que pueden limitar el desarrollo de la planta y su rendimiento (CIAT, 1980).

Cuadro 2. Requerimientos edáficos para el frijol común

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Textura</th>
<th>Profundidad cm</th>
<th>% pendiente</th>
<th>Drenaje</th>
<th>PH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Óptimo</td>
<td>Franco</td>
<td>Más de 60</td>
<td>-15%</td>
<td>Bueno</td>
<td>6.5</td>
</tr>
<tr>
<td>Bueno</td>
<td>Arcillo – arena</td>
<td>40-60</td>
<td>15-30</td>
<td>Moderado</td>
<td>6.0</td>
</tr>
<tr>
<td>Marginal</td>
<td>Arenosa</td>
<td>Menos de 40</td>
<td>+30</td>
<td>Imperfecto</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Fuente: INTA, 1995
2.2 Rhizobium

Son bacterias gramnegativas, aerobias, en forma de bastones de una longitud aproximada de 2 μm y 0.5 μm a 1 μm de anchos, móviles y su temperatura óptima es entre 25°C a 30°C, soportan temperaturas entre 3-35 °C, su hábitat natural es el suelo, ahí pueden sobrevivir en estado libre, separados de las plantas huéspedes, en forma saprófita, donde han existido leguminosas huéspedes, las bacterias persisten durante muchos años, listas para penetrar en la raíz de una leguminosa apropiada.

La persistencia, sin embargo, disminuye si las condiciones edáficas y climáticas se toman desfavorables. Como fuente de carbono los Rhizobium utilizan diferentes tipos de azúcares (pentosas, hexosas), como fuente de nitrógeno puede usar nitrato o amonio del suelo. El nitrógeno molecular sólo no es suficiente para lograr la multiplicación de las bacterias (FAO, 1985b. Binder, 1997)

2.2.1 Clasificación de los Rhizobium

Las bacterias Rhizobium tienen diversos grados de efectividad en la simbiosis, existen muchos factores que afectan la simbiosis sin embargo el más importante de todos es el hecho de que no cualquier Rhizobium es capaz de formar nódulos en cualquier leguminosa. Algunos Rhizobium son muy específico y no pueden entrar en relación simbiótica más que con ciertas especies (Binder, 1997)
Cuadro 3. Clasificación de los Rhizobium según los grupos de inoculación cruzada

<table>
<thead>
<tr>
<th>Especie de Rhizobium</th>
<th>Géneros de leguminosas huéspedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. meliloti</td>
<td>Medicago, melilotus, trigonella</td>
</tr>
<tr>
<td>R. trifolii</td>
<td>Trifolium</td>
</tr>
<tr>
<td>R. leguminosarum</td>
<td>Lathyrus, Lens, pisum, vicia</td>
</tr>
<tr>
<td>R. phaseoli</td>
<td>Phaseolus vulgaris, Phaseolus coccineus</td>
</tr>
<tr>
<td>R. lupini</td>
<td>Lupinus, Ornishpus</td>
</tr>
<tr>
<td>R japonicum. sinonimo</td>
<td>Glycine</td>
</tr>
<tr>
<td>Bradyrhizobium japonicum</td>
<td>Alysicarpus, Arachis, Cajanus, Cannavalia, Crotalaria</td>
</tr>
<tr>
<td></td>
<td>Desmodium, Dolichos, Indigofera, Mucuna, Onobrychis</td>
</tr>
<tr>
<td></td>
<td>Phaseolus lunatus, P. acutifolius, Pueraria, Stylosanthes,Vigna.</td>
</tr>
</tbody>
</table>

FUENTE: FAO, 1985a; Binder, 1997
2.3 Inoculación y fijación simbiótica de nitrógeno

Las plantas leguminosas pueden obtener la mayor parte del nitrógeno que necesitan de la amplia disponibilidad de N gaseoso del aire. El aire tiene 80 % de N, las leguminosas obtienen y utilizan ese N trabajando en simbiosis con algunas bacterias (rhizobios) en los nódulos de las raíces. Los rhizobios infectan los pelos radiculares de la leguminosa, los nódulos se desarrollan y se convierten en pequeñas fábricas en las raíces de la leguminosa (FAO, 1985a).

Las leguminosas dejan nitrógeno fijado en el suelo para los cultivos siguientes. Como el N es comúnmente el elemento más limitante en la producción de alimentos y uno de los más caros como fertilizante, la habilidad de los cultivos de las leguminosas para trabajar simbioticamente con los rhizobios para producir proteínas está incrementando su importancia en la agricultura mundial (FAO, 1985a).

2.3.1 Nodulación

Los Rhizobium generalmente están presentes en el suelo y comienzan a multiplicarse en la rizosfera de una leguminosa cuando germina la semilla (Binder, 1997). Esta multiplicación ocurre con gran intensidad en la inmediata proximidad de los pelos absorbentes de la raíz, a consecuencia de las excreciones de material energético y sustancias estimulantes de crecimiento. La proliferación de Rhizobium provoca que los pelos radiculares se encurven, el Rhizobium entra, se multiplica y se forma un hilo de infección (FAO, 1985a), este luego se ramifica. El hilo de infección induce la división de las células de la corteza, liberándose los Rhizobium del hilo de infección en los tejidos corticales de la raíz y multiplicándose en el citoplasma de dichas células. Como consecuencia de esta proliferación de bacterias, la célula huésped se ve estimulada a una activa división, pasando los Rhizobium a las células hijas de las sucesivas divisiones. Este proceso produce un abultamiento en la raíz que constituye el nódulo (Binder, 1997).
2.3.2 Tipos y distribución de nódulos

La nodulación se inicia en el momento de brotar la primera hoja verdadera de la planta. En la floración se produce la lisis de los bacteroides y la lehemoglobina se degrada. La destrucción del nódulo comienza por la dispersión de las bacterias a los espacios intercelulares, el material de reserva acumulado en los nódulos es transportado hacia la semilla, posteriormente los bacteroides se liberan en el suelo por la desintegración del nódulo viejo. Cuando esto pasa los nódulos pierden su tinte rojo y se produce un ennegrecimiento general de los tejidos.

Los nódulos efectivos son generalmente grandes y se agrupan en la raíz primaria y en las raíces secundarias superiores (FAO, 1985a). En contraste los nódulos inefectivos son pequeños, numerosos y con frecuencia distribuidos en todo el sistema radicular.

2.3.3 Nodulación eficiente

La función de los nódulos es la fijación de N atmosférico. Es fundamental, entonces saber reconocer cuándo la simbiosis es eficiente o ineficiente, basándose en tamaño, distribución y color de los nódulos, así como por el aspecto de la planta (Binder, 1997).

En una simbiosis efectiva la planta tiene una postura sana con color verde intenso, los nódulos son de gran tamaño y se sitúan cerca de la raíz principal, no son muy numerosos. Las asociaciones ineficientes presentan plantas con un color verde pálido que denota la falta de N los nódulos son pequeños en gran número y se ubican en todo el sistema radical (Binder, 1997).

2.3.4 Examen de nódulos

El mejor momento para el examen de los nódulos es durante el período de floración temprana, la cualidad que determina el nivel de efectividad es la presencia en el interior del nódulo de una sustancia llamada lehemglobina que le brinda al nódulo un color rosado. La lehemoglobina es el máximo responsable de la fijación nitrogenada no es responsable de la nitrogenasa (enzima fijadora del nitrógeno), pero controla el oxígeno necesario para activar esa enzima (FAO, 1985a).
Los nódulos inefectivos son internamente de color blanco a verde pálido. Cuando las leguminosas se suplen con fertilizantes nitrogenados, los nódulos producidos por cepas efectivas de rhizobios permanecen pequeñas y muestran las mismas características de los producidos por rhizobios inefectivos, luego que el nitrógeno se agota vuelven a funcionar normalmente; en contraste los nódulos producidos por rhizobios efectivos en plantas deficientes en molibdeno tienden a crecer más y tienen aspecto normal, excepto el color.

2.4 Nutrición mineral de la simbiosis

Una leguminosa bien nodulada tiene su propio suministro de nitrógeno, esto les brinda ventaja en suelos particularmente pobres en este elemento, sin embargo, el optimo crecimiento y fijación de N en el suelo depende del suministro adecuado de los demás elementos esenciales tales como fósforo, potasio, calcio, magnesio, azufre, hierro, manganeso, boro, zinc, cobre, cobalto, molibdeno, cloro. (FAO, 1969)

2.4.1 Acidez, calcio, aluminio, manganeso

La acidez y concentración de calcio interactúan sobre la proliferación de los rhizobios y la infección de ciertas leguminosas. El calcio tiene la función de moderar el efecto tóxico del aluminio y manganeso sobre el crecimiento de la planta, lo cual puede también limitar la fijación de nitrógeno.

El aluminio limita tanto el crecimiento como la elongación de la raíz, la mayoría de las leguminosas no nodulan con pH bajo, independientemente de la concentración de aluminio (Sánchez, 1981)

2.4.2 Fósforo, azufre, potasio

Las deficiencias de fósforo, azufre y potasio se manifiestan principalmente en reducción del crecimiento de la leguminosa lo cual a su vez reduce la fijación total de nitrógeno. Según (FAO, 1969) la aplicación de fósforo y potasio incrementa el número de nódulos, el peso total de los nódulos y las vainas por planta. El azufre tiene un efecto indirecto: su función es integrar aminoácidos para convertirlos luego en proteína aún sin afectar el rendimiento.
2.4.3 Nitrógeno

Generalmente se acepta que la presencia de nitrógeno retarda o inhibe la nodulación. En su presencia los nódulos permanecen más o menos inactivos pero pronto a funcionar cuando la fuente de nitrógeno se agote. Debido a este efecto, usualmente no se recomienda el agregado de fertilizantes nitrogenado, sin embargo, existen excepciones donde el uso prudente ha estimulado los rendimientos y la fijación atmosférica, cuando la aplicación de pequeñas cantidades de nitrógeno estimula el crecimiento de la planta y mejora su potencial fotosintético sin retardar excesivamente el desarrollo de los nódulos (FAO, 1985a).

A menudo se utilizan pequeñas cantidades de fertilizantes nitrogenados para estimular el crecimiento inicial de los cultivos de leguminosas, particularmente en climas tropicales.

2.4.4 Micronutrientes

La nitrogenasa, enzima fijadora de nitrógeno, está compuesta de molibdeno y hierro. Sin cantidades adecuadas de estos elementos la fijación no puede ocurrir; el hierro es un constituyente de la leghemoglobina del nódulo que protege a la nitrogenasa de la inactivación por oxígeno. Se puede aplicar por aspersión foliar.

El boro participa de la actividad meristemática tanto del nódulo como de la planta huésped, el zinc, manganeso, cloro y cobalto se requieren para el crecimiento del huésped pero no afectan la nodulación. (FAO, 1985a).

2.5 Inoculantes e inoculación

En muchos suelos la bacteria del nódulo no está en condiciones adecuadas ya sea en número o calidad. En estas circunstancias es necesario inocular la semilla o el suelo con cultivos de Rhizobium altamente efectivos (FAO, 1985a; Binder, 1997).
El inoculante es un preparado industrial, fabricado a partir de cultivos puros de Rhizobium que contiene un elevado número de bacterias (3-5 millones /ml) de una cepa seleccionada por su capacidad para nodular con una determinada planta leguminosa, así como por su capacidad de fijar nitrógeno. Los Rhizobium se mantienen con un soporte inerte, por lo general de turba orgánica, finamente molida y previamente esterilizada y neutralizada. La turba protege a la bacteria durante el periodo de preservación y facilita su adhesión a la semilla (Binder, 1997).

El proceso en el cual el inoculante se le aplica a la semilla se le llama inoculación (FAO, 1985a).

2.5.1 Características de un inoculante efectivo

Según FAO (1985a) las características de un inoculante son:

A. El inoculante debe contener solo rhizobios capaces de producir nódulos y fijar grandes cantidades de nitrógeno con diferentes huéspedes. Los inoculantes efectivos pueden integrarse con una sola cepa o pueden contener varias cepas.

B. Los inoculantes deben contener grandes cantidades de rhizobios viables, por lo menos 10000 a 1 millón por semilla.

C. El soporte o base del inoculante debe proteger al rhizobio en el paquete y sobre la semilla. Debe ser fácil de aplicar y se debe adherir bien a la semilla.

D. El inoculante debe estar libre de otras bacterias que puedan ser perjudiciales al rhizobio o a la plántula.

E. El inoculante debe estar envasado para proteger a los rhizobios hasta que sea usado por el productor, el paquete debe permitir intercambio de gases y retener humedad.

F. El paquete debe proveer instrucciones claras y una lista de las especies de leguminosas que nodula efectivamente.

G. El paquete debe mostrar la fecha, el nombre y dirección del fabricante.
2.5.2 Causas de la falla en inoculación:
Según FAO 1985a son:
A. Puede ocurrir que la cepa no tenga la capacidad de formar nódulos fijadores en la especie cultivada, pero esto es raro pues los productos vienen bien rotulados.
B. Inoculante que no sea rico en bacterias, en tal caso hay ausencia de nódulos o poco de ellos.
C. Muchos suelos contienen de por sí Rhizobium fijadores específicos para la leguminosa que se cultiva y en este caso la inoculación es innecesaria pues las plantas tendrán nódulos fijadores bien sean o no inoculados.
D. El exceso de N en el suelo, también una deficiencia de fósforo, boro o molibdeno, así también un crecimiento muy débil de la planta.

2.6 Acidez del suelo y su efecto sobre las plantas

2.6.1 Acidez del Suelo
Según Fassbender (1987), la acidez del suelo depende del contenido de hidrogeno ionizable, del Al en diferentes formas disociables y, en grado menor, de los iones de manganeso(Mn) y hierro (Fe), todos en equilibrio con la solución donde ocurren variadas reacciones de hidrólisis.

El Al es el catión dominante asociado con la acidez del suelo, los iones de hidrógeno (H⁺) producidos por la descomposición de materia orgánica, el exceso de lluvia y la adición de fertilizantes acidificadores, son inestables en suelos minerales

2.6.2 Causas de la acidez del suelo
La acidificación progresiva que se presenta de manera especial en los suelos de áreas tropicales húmedas, particularmente cuando se le practica una agricultura intensiva, se debe al paulatino reemplazo de las bases cambiables (Ca, Mg, K, Na) por iones H⁺ y Al. Este reemplazo resulta de la percolación del agua, de la extracción de los cationes cambiables y del uso de abonos de carácter ácido (Fassbender, 1987).
2.6.3 Efecto tóxico del aluminio (Al)

La causa de infertilidad de suelos ácidos se correlaciona directamente con saturación de Al. El pH no tiene efectos directos sobre la planta a no ser que sea menos de 4.2 donde la concentración de iones de hidrógeno puede detener y hasta revertir la adsorción de cationes por la raíz (Sánchez, 1981), dependiendo tanto de la tolerancia de la planta como de la mineralogía de arcillas, el contenido de materia orgánica, la presencia de otros cationes o aniones y la salinidad total del suelo, los síntomas de toxicidad se parecen con frecuencia a los que se dan por deficiencia de fósforo o calcio (Fassbender, 1987). Frecuentemente son causa directa de reducción de rendimientos, el Al tiende a acumularse en las raíces, impidiendo la adsorción y el traslado del calcio y el fósforo en la parte aérea, de este modo puede producir o acentuar deficiencias de calcio y fósforo (Sánchez, 1981).

2.6.4 Toxicidad de manganeso (Mn)

El Mn es muy soluble a valores de pH menores de 5.5, si este elemento está presente en cantidad suficiente, puede haber toxicidad en conjunto con el aluminio con valores de pH de alrededor de 5.5-6.0, contrario al aluminio, el Mn es un nutriente para las plantas por lo cual el encausado está dirigido a disminuir los niveles hasta un grado óptimo (Sánchez, 1981).

2.7 Criterio para la evaluación de una tecnología

Tripp y Woodley (1989) definen 7 criterios:

1. La probabilidad de que la solución propuesta funcione bajo las condiciones agroecológicas y de manejo del pequeño productor.
2. La rentabilidad estimada de la solución.
3. Si la solución propuesta es o no compatible con el sistema de producción (integral), es decir con las circunstancias naturales y socioeconómicas bajo las cuales operan los campesinos.
4. Cuánto ayudará la solución a reducir riesgos por parte del pequeño productor.
5. La necesidad de algún apoyo por parte de extensión, crédito o insumos para garantizar que la solución pueda adoptarse.
6. La facilidad con que los productores puedan probar la solución propuesta.
7. La facilidad de llevar a cabo el programa experimental para probar la solución propuesta incluyendo el tiempo y el gasto requerido.

2.8 Factores que afectan la producción de frijol común

La producción de frijol común está determinada por muchos factores bióticos y abióticos que interactúan durante el ciclo vegetativo de esta especie, la importancia del estudio de los factores limitativos del rendimiento del frijol se debe al hecho de que el grano de frijol es un componente protéico muy importante en la dieta alimenticia de la mayoría de la población latinoamericana. (CIAT, 1982).

Existe una diferencia significativa entre la producción actual y la potencial, según CIAT (1982) esto se debe a distintos factores:
1. Ataque de enfermedades.
2. Daños causados por insectos.
3. Desórdenes nutricionales.
4. Factores ambientales.
5. Ataque de malezas.

2.8.1 Ataque de enfermedades

Las enfermedades son uno de los factores de mayor importancia económica que afectan al frijol común en el trópico, estas son causadas principalmente por hongos, virus y bacterias que pueden reducir significativamente los rendimientos y la calidad de la vaina y de la semilla (CIAT, 1994).

Para que una enfermedad se presente, se requiere de la presencia del patógeno, el huésped en estudio susceptible y ambiente favorable (DGTA, 1983)
Varias estrategias pueden ser usadas para manejar las enfermedades del frijol. La selección de una estrategia depende de una serie de factores biológicos, climáticos, edáficos, económicos y sociales. Es importante tener en cuenta que en el trópico el frijol es producido mayormente por pequeños agricultores que tienen muy poco capital, por eso la estrategia más práctica y barata para manejar las enfermedades es el uso de variedades resistentes (CIAT, 1994)

2.8.1.1 Clasificación de las enfermedades

Según CIAT (1994) y CIAT (1982) las enfermedades se clasifican en:

- Enfermedades causadas por virus. Por ejemplo: virus del mosaico común del frijol, virus del mosaico rugoso del frijol, virus del moteado amarillo del frijol, virus del mosaico dorado del frijol entre otras.

- Enfermedades causadas por hongos. Por ejemplo: antracnosis, mancha angular, roya, mustia hilachosa, ascochyta, fusariosis, entre otras.

- Enfermedades causadas por bacterias. Por ejemplo: bacteriosis común, mancha café bacteriana, quemazón bacteriana, entre otros.

- Enfermedades causadas por nemátodos. Por ejemplo: nemátodos de los nudos radicales, nemátodos de las lesiones radicales.

2.8.2 Daños causados por insectos

Se han reportado más de 150 especies de insectos y otros invertebrados dañinos al frijol común en América Latina. Sin embargo, solo un reducido número de estas especies tiene importancia económica por su prevalencia, la naturaleza del daño o sus efectos en la producción, las especies más importantes económicamente pueden atacar la planta en cualquiera de sus estados de desarrollo, desde la siembra hasta la cosecha y después de esta, sus daños se manifiestan en pérdidas en población de plantas, defoliación y daños a raíces, tallos, flores, botones y vainas, hay también insectos que atacan granos almacenados (CIAT, 1994)
Existen factores que pueden favorecer la presencia y el aumento de las poblaciones de insectos, entre ellas se puede mencionar el uso indiscriminado de insecticidas, las siembras escalonadas y ciertas prácticas culturales que estimulan ataques fuertes. En años recientes el uso abusivo e indiscriminado de insecticidas ha agravado el problema de plagas como consecuencia de la destrucción de la fauna benéfica, la resurgencia de insectos, la elevación de insectos secundarios a la categoría de primera importancia económica, el estimulo para que las plagas desarrollen resistencia, la aparición de residuos tóxicos en las cosechas y problemas generales de contaminación ambiental (CATIE, 1985)
En general se ha tratado de hacer recomendaciones de control que no contemplan el uso excesivo de insecticida, para esto es necesario tener en cuenta que su uso debe estar precedido de una estimación de población presente y del estado fenológico en que se encuentra el cultivo (CIAT, 1994). Las aplicaciones deben hacerse cuando las poblaciones de insectos lleguen al nivel denominado umbral económico o umbral de acción, en este punto es que se debe tomar acciones de control antes de que la población empiece a hacer daños económicos (CIAT, 1982)

2.8.3 Desórdenes nutricionales

La producción de frijol se realiza en suelos con condiciones físicas y químicas muy variables. En muchos de estos suelos existen desórdenes nutricionales que pueden limitar los rendimientos. Estos desórdenes nutricionales incluyen deficiencias simples como la del fósforo; deficiencias dobles, como las de nitrógeno y magnesio; deficiencias múltiples, como las de fósforo, magnesio y boro; toxicidad como la del aluminio; y combinaciones de deficiencias y toxicidad, como en el caso de deficiencias de fósforo y calcio con toxicidad de aluminio (CIAT, 1980; CIAT, 1994)
El frijol es un cultivo exigente en cuanto a sus requerimientos nutricionales. El orden de extracción de sus nutrientes es N>K>Ca>S>Mg>P>Fe>Mn>Zn>Cu>B. los requerimientos nutricionales del frijol son diferenciables y varían de acuerdo con el genotipo.
Cuadro 4. Requerimiento nutricional promedio para variedades arbustivas de frijol en climas medios y cálidos

<table>
<thead>
<tr>
<th>Elemento nutricional</th>
<th>Cantidad en kg / ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>136</td>
</tr>
<tr>
<td>Potasio</td>
<td>114</td>
</tr>
<tr>
<td>Calcio</td>
<td>54</td>
</tr>
<tr>
<td>Azufre</td>
<td>25</td>
</tr>
<tr>
<td>Magnesio</td>
<td>18</td>
</tr>
<tr>
<td>Fósforo</td>
<td>18</td>
</tr>
</tbody>
</table>

2.8.3.1 DIAGNÓSTICO DE LOS DESÓRDENES NUTRICIONALES

La caracterización visual de los síntomas, los análisis de suelos y de tejidos así como la experimentación constituyen los mejores recursos para el diagnóstico de los desórdenes nutricionales del frijol común (CIAT, 1994; CIAT, 1980).

Las muestras de suelo se toman con un barreno de la rizósfera de la planta, combinando varias submuestras provenientes de la misma área en una sola muestra. Las muestras foliares (sin peciolo) se toman de la parte superior de la planta, de las hojas más jóvenes al momento de iniciarse la floración. Se recomienda hacer una comparación del resultado del análisis foliar y del análisis de suelo para identificar el elemento que está causando los síntomas (CIAT, 1980).

2.8.4 FACTORES AMBIENTALES:

2.8.4.1 HUMEDAD

Las condiciones extremas de falta o exceso de humedad, influyen en los procesos fisiológicos, en el desarrollo de la planta y en la susceptibilidad a los organismos fitopatógenos (CIAT, 1980).
Un bajo contenido de humedad en el suelo puede ocasionar daños en las plantas, debido a la falta de agua para las raíces, la acumulación de iones tóxicos, tales como magnesio y boro, el cierre de las estomas, la menor absorción de CO₂ y el marchitamiento temporal o permanente de la planta. Por otro lado la alta humedad del suelo y las inundaciones pueden lixiviari nutrimentos esenciales para el desarrollo normal de la planta, disminuir el contenido de oxígeno, inducir clorosis general en la planta y aumentar los niveles de subproductos tóxicos resultantes del metabolismo anaerobio (CIAT, 1980; CIAT, 1994).

2.8.4.2 Temperatura

Los cambios repentinios en las temperaturas del suelo y del aire influyen en la habilidad de las plantas de frijol para absorber la humedad del suelo. Las temperaturas bajas pueden producir daños por enfriamiento o por heladas que se refleja con desarrollo raquíctico de la planta en caso de que estas altas temperaturas persistan por un tiempo prolongado. Las temperaturas altas pueden inducir el aborto floral, aumentar la tasa de evo transpiración y ocasionar el marchitamiento de la planta, si hay un suministro insuficiente de humedad en el suelo las raíces no están suficientemente desarrolladas (CIAT, 1980).

2.8.5 Ataque de malezas

Las malezas ecológicamente adaptadas a crecer en las condiciones en que se siembran los cultivos y que perjudican las cosechas, esto significa que las malezas crecen espontáneamente en terrenos agrícolas sin que el agricultor las siembre intencionalmente (CATIE, 1990)

Las malezas interfieren con los cultivos compitiendo con ellos por luz, agua y nutrimento del suelo (competencia) o a través de la producción y excreción de sustancias tóxicas al cultivo (alelopátia). Algunas malezas pueden ser también hospederos alternos de patógenos o insectos plagas y así ejercer un efecto indirecto negativo sobre las cosechas (CATIE, 1990)
3. MATERIALES Y MÉTODOS

3.1 Descripción de la evaluación

Se hizo una selección conjunta con la secretaría del PL-480, escogiendo la zona de Nueva Guinea, por ser zona productora importante de frijol durante esta época de siembra.

3.1.1 Localización del área

El presente trabajo se realizó en algunas comunidades del municipio de Nueva Guinea, el cual se encuentra localizado en la Región Autónoma del Atlántico Sur, entre las coordenadas 11° 84' de Latitud Norte y 84° 25' de Latitud Oeste. Limita al Norte con los municipios de Muelle de los Bueyes y El Rama, al Sur con La Azucena y San Miguelito, al Este con El Rama y al Oeste con El Almendro y Villa Sandino.

3.1.2 Tamaño y número de parcelas

El presente estudio se estableció en 14 fincas, obteniéndose datos únicamente en 9 de ellas. En cada sitio se establecieron 2 parcelas, una con inoculante y otra sin inoculante para garantizar la representatividad de la tecnología, el tamaño de la parcela se es de 440m² (625 vrs²) se propuso esta área por dos razones: este tamaño calza con las especificaciones del INTA (Instituto Nicaragüense de tecnología Agropecuaria) para las evaluaciones de los cultivos anuales y además los productores no disponían de mas área.

3.1.3 Zonificación ecológica

El municipio de Nueva Guinea es considerado una zona de trópico húmedo, dada las siguientes características: Altitud 210 msnm, con algunas elevaciones mayores en el sur y noreste. El promedio anual de temperatura es de 24 ºC., con temperaturas máximas de 30 ºC y mínimas de 23 ºC, con noches frías y días calientes.

La precipitación presenta un promedio anual de 2800 mm, con un promedio de 8 a 9 meses de lluvia, los cuales empiezan en Mayo y terminan en Enero. La humedad relativa fluctúa entre 83
85 %. El municipio de Nueva Guinea presenta en sus cuencas hidrográficas los ríos Punta Gorda, plata y Kurinwás.

3.1.4 Precipitación

El comportamiento de la precipitación acumulada mensual durante la evaluación en el período de Diciembre de 1998 hasta Febrero de 1999, se presenta en la Figura 1, ocurriendo la mayor precipitación durante el mes Diciembre, en el que muchos productores del municipio tuvieron problemas de germinación y enfermedades en el cultivo, producto de dicha precipitación.

![Precipitación Mensual](image)

Figura 1: Precipitación mensual ocurrida durante el periodo de evaluación, en la época de Apante de 1998-1999, en la zona de Nueva Guinea. Fuente INETER

3.1.5 Características de los suelos

Los suelos predominantes en el municipio de Nueva Guinea presentan las siguientes características:

Son suelos profundos, pertenecientes a los órdenes de los ultisoles y alfisoles. Presentan un elevado grado de acidez (pH de 4.5 a 6.7) y bajo grado de saturación de bases. Dichos suelos tienen limitada capacidad de intercambio catiónico en la capa superficial (15 - 80 meq/100 g de suelo) y en el subsuelo (7 - 40 meq/100 g de suelo)
Una característica importante es que los suelos presentan una notable escasez de fósforo aprovechable. Presentan relativamente buena estructura, son bien drenados, poseen baja fertilidad y son sumamente susceptibles al empobrecimiento nutricional y a la erosión.

La pendiente de los suelos es variada, el 17% del área cuenta con pendientes de 0 a 5%, el 24% cuenta con pendientes de 6 a 15% y el 59% presenta pendientes mayores del 15%. Aproximadamente el 60% de los suelos son afectados por erosión hídrica (Tapia, 1990).

Se considera que estos suelos tienen como limitante para el uso agropecuario, una baja fertilidad restringida a la capa superficial, alto contenido de hierro y aluminio, así como baja disponibilidad de fósforo.

3.1.6 Usos del suelo

En el uso de la tierra predomina el pastoreo extensivo y la siembra de cultivos anuales, tales como el maíz, frijol y arroz, de los cuales obtienen bajos rendimientos, luego de 6 años de explotación, aún con el uso de fertilizante (Acuña et al., 1990).

Se calcula que del área disponible, un 30% es apta para agricultura, y 57% para pasto y 13% para bosques naturales o vida silvestre. Los cultivos anuales tienen una inversión relativamente baja, acelerada degradación del suelo por labranza, ciclo corto, baja producción de biomasa, falta de cobertura del suelo durante gran parte del tiempo (Gómez et al., 1990).

3.1.7 Uso potencial del suelo

En cuanto al uso potencial del suelo, el 95% presenta características aptas para bosques y menos del 5% tienen características de ser aprovechables para cultivos semi-intensivos. Los suelos de mejor calidad se encuentran en la zona central y sus alrededores, presentan alta lixiviación, así como proliferación de malezas tropicales (Tapia, 1990). La producción agrícola constituye la principal fuente de ingreso de las familias campesinas. Los sitios donde se ubicaron los tratamientos poseen como factor común la textura del suelo que es arcilloso, la pendiente
moderada, de 5% hasta 10%, con niveles de fertilidad de los suelos variable (ver Anexo 1), comúnmente aprovechados para la siembra de frijol de apante y maíz de postrera.

3.1.8 Características de las fincas

En estas fincas la mayor parte de las características físicas y químicas del suelo fueron bastantes similares, estos aspectos se presentaron en características físicas y químicas del suelo. La pendiente del terreno donde se ubicaron las parcelas de evaluación varían de, 0 - 3 %, la única finca con 5 % es la del productor Rafael Báez.

El uso de la tierra en su mayoría son cultivos anuales (frijol, maíz, quequisque, etc.), con algunos cultivos perennes y semi-perennes (citrícos, musaceas y otros), además potreros y bosques.

En cuanto a la textura del suelo, todas las fincas resultaron ser suelos arcillosos, en materia orgánica entre un rango de 4.02 - 6.3 %; pH, con un rango es de 4.2 - 5.0. En cuanto a nitrógeno(N), fósforo(P) y potasio(K) el rango es de: 0.2 - 0.31 %, 0.23 - 1.87 ppm y 0.13 - 0.95 meq, respectivamente.

Con excepción únicamente las fincas de dos productores que no entran en los rangos establecidos de: materia orgánica, nitrógeno y potasio. Estas fincas son la de los productores, Benedicto Obando y Agenor López, las que presentaron en el análisis de suelo valores de 2.1 y 0.78 % en materia orgánica, 0.1 y 0.03 % de nitrógeno, 0.0 y 0.0 ppm de fósforo respectivamente.

La elevación de las fincas se encuentra entre un rango de 165-200msnm y de acuerdo a las coordenadas el rango es de: N: 11°41’25” - 11°44’30” y O: 84°21’52” - 84°31’32”, saliendo de este rango la finca del productor Cesar Melgara, la que tiene las coordenadas, N: 12°36’31” y O: 85°37’35”.
3.2 Análisis físico-químico del suelo

Para realizar el análisis físico-químico del suelo se extrajeron 5 submuestras de suelo en el campo, por cada sitio o finca seleccionada en la evaluación, a una profundidad de 30 cm, esta actividad se realizó antes de la siembra. Los resultados de dicho análisis se presentan en el anexo 1.

3.3 Material biológico utilizado

La semilla de frijol utilizada, corresponde a las variedades: Dor-364, Estelí-90 y Rojo Nacional, con un rendimiento potencial de: 1290-2259kg/ha, 968-1613 kg/ha, 968-1290 kg/ha respectivamente, que fueron facilitadas por el INTA para los agricultores locales que reciben asistencia técnica, obteniendo una relación de 3 productores por variedad. Ver Anexo 1.

La empresa GRAINCO de la ciudad de Chinandega, es la encargada de producir el inoculante que en esta evaluación se utilizó como una alternativa tecnológica, este consiste en una mezcla de 3 cepas de Rhizobium.

3.4 Descripción de tratamientos

El presente estudio se estableció inicialmente en 14 fincas, obteniendo datos únicamente en 9 de ellas. En cada sitio o finca se establecieron 2 parcelas, de 440 m² cada parcela, una con inoculante y otra sin inoculante (manejo agronómico tradicional). La parcela inoculada y sin inocular fueron los tratamientos usados en esta evaluación con cada productor. A las parcelas inoculadas se les aplicó el inoculante al momento de la siembra, a razón de 1 kg de inoculante por cada 45.4 kg de semilla (1 qq). El proceso de inoculación consistió en mezclar el inoculante con aceite o leche y formar una pasta, luego aplicarlo a las semillas hasta cubrirlas por completo, es importante recordar sembrar de inmediato o 20 minutos después de la inoculación.

Cabe señalar que en el manejo agronómico tradicional, los productores de la zona acostumbran aplicar 2 qq de fertilizantes químicos, de fórmula 18-46-0 al momento de la siembra, llevando de esta manera fertilizantes químicos ambas parcelas con igual dosificación.
3.5 Variables medidas

La variable principal en las parcelas de evaluación es la de rendimiento del cultivo. Sin embargo para fines académicos, también se evaluaron 5 variables más, que abajo se describen.

Los momentos de muestreo para monitorear las distintas variables se realizaron en la etapa de Pre-floración (R_4), floración (R_6), llenado de vainas (R_8) y madurez fisiológica (R_9) del cultivo.

3.5.1 Número de nódulos

En esta variable se muestrearon 5 plantas al azar por tratamiento las cuales fueron cuidadosamente extraídas durante la etapa de floración (R_4) del cultivo, posteriormente se realizó el conteo de nódulos separándolos de las raíces e introduciéndolos en una bolsa de papel para ser trasladados al laboratorio.

3.5.2 Peso seco de nódulos

Para la determinación de esta variable se procedió al secado de los nódulos en el laboratorio a temperatura ambiente durante dos semanas, procediéndose al pesaje de los mismos en una balanza analítica de alta precisión.

3.5.3 Densidad poblacional

La densidad poblacional se determinó a través de un muestreo con 5 observaciones de 1 metro lineal en cada tratamiento, midiendo la distancia entre hilera, se contabilizaron el número de plantas por observación, luego se calculó el promedio de las observaciones que junto con la distancia entre hileras se estimó la población por hectárea (ha).
3.5.4 Número de vainas por planta

Esta variable se muestreó en la etapa R8 del cultivo y en cada punto de observación se contabilizó el número de vainas en dos plantas contabilizando un total de vainas en 10 plantas, para después dividir el total entre 10 obteniendo de ese modo el número de vainas por planta.

3.5.5 Granos por vaina

El momento de medición de esta variable fue el mismo de la anterior y por cada observación se contaron los granos en 2 vainas, teniendo un total de granos por 10 vainas, esta cifra se dividió entre 10 para obtener el número de granos por vaina.

3.5.6 Rendimiento

Esta variable se evalúa al momento de la cosecha y secado de grano, se pesó la cantidad de grano producido en cada parcela expresando el resultado en kilogramos por hectárea.

3.6 Análisis estadístico

3.6.1 Prueba “t” de student

Cada variable se analiza de manera independiente, a través de gráficos, el análisis estadístico utilizado fue la “t” de student que consiste en:

- Se determinan las diferencias entre cada par de datos apareados, considerando esa diferencia como muestra de una población.
- Se obtiene el valor de “t” calculado (t_c), relacionando el promedio de las diferencias (d) y el error estándar del promedio de la serie de diferencias obtenidas (S_d).
- Luego ese valor se compara con el límite mínimo significativo obtenido en las tablas de “t” student (“t_i”).
3.7 Análisis económico

En el análisis económico, se utilizó el presupuesto parcial que es un método que se utiliza para organizar los datos experimentales con el fin de obtener los costos y beneficios de los tratamientos alternativos, esta metodología del CIMMYT (1988), considera lo siguiente:

3.7.1 Rendimiento medios (kg /ha)

Es el dato obtenido en la parcela del productor, tanto inoculada como sin inocular, al momento de la cosecha, se anotan en la primera línea del presupuesto parcial.

3.7.2 Rendimiento ajustado

Es el rendimiento medio de cada tratamiento, reducido en un cierto porcentaje, en el caso de esta evaluación fue del 5 %, con el fin de reflejar la diferencia entre el rendimiento experimental y el que el agricultor podría lograr con ese tratamiento, los rendimientos obtenidos en ensayos en parcelas representativas, a menudo son mayores que los que el agricultor pueda lograr con los mismos tratamientos.

3.7.3 Costos que varían

El total de costos que varían es la suma de todos los costos (por hectárea) que varían para un determinado tratamiento, relacionados con los insumos comprados, la mano de obra y la maquinaria, en esta validación los costos que varían son de la parcela inoculada y comprende el costo del inoculante y mano de obra.
3.7.4 Precio de campo (del producto)

El precio de campo del producto es el valor que tiene para el agricultor una unidad adicional de producción en el campo, antes de la cosecha, para calcularlo se toma el precio que el agricultor recibe por el producto cuando lo vende y se le restan posibles costos relacionados con la cosecha y venta que son proporcionales al rendimiento.

3.7.5 Beneficio bruto de campo

El beneficio bruto de campo de cada tratamiento se calcula multiplicando el precio de campo por el rendimiento ajustado.

3.7.6 Beneficio neto

El beneficio neto se calcula restando el total de los costos que varían del beneficio bruto de campo para cada tratamiento.

3.8 Percepción de los agricultores sobre el inoculante.

Se hizo un monitoreo a los productores donde se realizó el trabajo de evaluación, con la finalidad de conocer las apreciaciones de los productores acerca de la tecnología. En esta actividad se realizó una encuesta a 70 productores que recibieron el inoculante. La encuesta consistió en una serie de preguntas que comprendían entre otros como, aspectos generales, manejo agronómico y sobre apreciación al inoculantes como crecimiento del cultivo, presencia de nódulos, producción y calidad del producto.

Durante el proceso de evaluación se realizaron 6 visitas de trabajo o seguimiento a las parcelas, en donde se recopilaron datos agronómicos y de manejo que el productor practicó al cultivo.
3.9 Manejo agronómico

Las diferentes actividades realizadas en el manejo agronómico del cultivo, fueron hechas de acuerdo a la forma tradicional de los productores.
La primera actividad fue la preparación del terreno, consistiendo en roza y quema controlada de rastrojos, realizada dos semanas antes de la siembra.
La siembra se realizó de forma manual siembra de arado (7 productores) y al espeque (2 productores), con la aplicación de fertilizante, las labores se realizaron en forma manual, con mano de obra familiar.
4. RESULTADOS Y DISCUSIÓN

4.1 Rendimiento

Los resultados de la evaluación arrojan diferencias numéricas que favorecen en la totalidad de los casos a las parcelas donde se utilizó el inoculante, con una diferencia que inicia desde 20.7 kg/ha para el productor Benedicto Obando, hasta 329.88 kg/ha para el productor Jaime Morales, en la parte estadística presento significancia puesto que $t_0 > t_0$, (ver cuadro 6) en algunos casos los problemas fitosanitarios fueron factores influyentes en los rendimientos.
El promedio de la evaluación que se obtuvo es de 877 kg/ha, superior al promedio nacional que es de 703 kg/ha.

Cuadro 5. Rendimiento del cultivo del frijol (kg / ha) establecido en las parcelas con semilla sin inoculante (SSI) e inoculada (SCI) en Nueva Guinea, Nicaragua, en la época de apante (1998 – 1999)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Nombre de productores</th>
<th>Sin inoculante</th>
<th>Con inoculante</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Julio Báez</td>
<td>1034.91</td>
<td>1293.64</td>
<td>258.73</td>
</tr>
<tr>
<td>2</td>
<td>Rafael Báez</td>
<td>1293.64</td>
<td>1423</td>
<td>129.36</td>
</tr>
<tr>
<td>3</td>
<td>Misael Muñoz</td>
<td>1423</td>
<td>1617</td>
<td>194</td>
</tr>
<tr>
<td>4</td>
<td>Agenor López</td>
<td>310.47</td>
<td>517.45</td>
<td>206.98</td>
</tr>
<tr>
<td>5</td>
<td>Francisco Hernández</td>
<td>517.45</td>
<td>776.18</td>
<td>258.73</td>
</tr>
<tr>
<td>6</td>
<td>Jaime Morales</td>
<td>536.86</td>
<td>866.74</td>
<td>329.88</td>
</tr>
<tr>
<td>7</td>
<td>Benedicto Obando</td>
<td>310.47</td>
<td>331.17</td>
<td>20.7</td>
</tr>
<tr>
<td>8</td>
<td>José Moreno</td>
<td>672.69</td>
<td>745.13</td>
<td>72.44</td>
</tr>
<tr>
<td>9</td>
<td>Cesar Melgara</td>
<td>983.16</td>
<td>1138.4</td>
<td>155.24</td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td>787</td>
<td>968</td>
<td>181</td>
</tr>
</tbody>
</table>

4.2 Número de nódulos por planta

Los Rhizobium generalmente están presentes en el suelo y comienzan a multiplicarse en la rizosfera de una leguminosa cuando germina la semilla, la formación de nódulos es el resultado de una respuesta específica de las raíces de la planta huésped a la invasión de los Rhizobium (Binder, 1997)

La evaluación de la nodulación resulta ser limitada cuando influyen algunos factores en la medida de éste parámetro, es decir que la determinación del número de nódulos no es una variable de mucha confiabilidad. Un factor que influye en esto es la compactación del suelo o una humedad deficiente al momento de hacer la extracción de la planta, la compactación puede ser una restricción severa en la formación de nódulos debido a la pobre aireación en la zona radicular lo cual limita la fijación de nitrógeno (Galomo, 1978).
La variable nódulos por planta muestra que existen diferencias numéricas (ver figura 2) en la mayoría de los productores a excepción del productor Rafael Báez que en su caso se debió al hecho de haber dejado a la intemperie por un tiempo la semilla inoculada.

En las parcelas inoculadas se encontró un promedio de 28 nódulos por planta versus los 10 nódulos por planta que se contabilizaron en la testigo, lo que significa que la mezcla de cepas utilizada en la inoculación fue efectiva. En el estudio experimental realizado en “La Compañía” (Masatepe) Portillo (1995) obtuvo un promedio de 12 nódulos por planta.

El cuadro 6 muestra los resultados de la variable numero de nódulos por planta, al realizar la prueba “t” de student, entre la parcela inoculada y sin inocular, se obtiene que hay diferencia estadística significativa entre los tratamientos, como \(t_c > t_a \) al 95% de probabilidad, se demuestra que la tecnología de inoculación es superior en cuanto a la variable numero de nódulos por planta que la tecnología que normalmente emplean los productores.

4.3 Peso seco de nódulos (en mg)

La fijación de nitrógeno atmosférico se realiza gracias a la actividad de la enzima nitrogenasa del Rhizobium presente en los nódulos. El peso de nódulos permite precisar esa actividad porque su variación está correlacionada positivamente con la actividad nitrogenásica y por lo tanto con la fijación (FAO, 1985a).

La variable peso seco de nódulos por planta muestra que existen diferencias numéricas (ver figura 3) en la mayoría de los casos, favoreciendo a la parcela inoculada, con excepción de el productor Rafael Báez que al igual que en la variable número de nódulos por planta presenta valores inferiores en la parcela inoculada.

Los valores de peso promedio por variedad son: para Dor-364, 64 mg en la parcela con inoculante y 8 mg en la sin inocular, la variedad Esteli-90, 35 mg la inoculada y 18 la sin inocular, Rojo nacional, 38 mg y 32 mg, respectivamente. El presente estudio mostró valores superiores a los estudios realizados en Esteli por Mendoza (1997) y en Chinandega por Sánchez (1998).

El cuadro 6 muestra los resultados de la variable peso seco de nódulos por planta, al realizar la prueba "t" de student, entre la parcela inoculada y sin inocular, se obtiene que existe diferencia estadística altamente significativa entre los tratamientos inoculado y sin inocular, en base a que tc>tt, con un 95% de probabilidad, lo que demuestra que la tecnología de inoculación es superior en la variable peso seco de nódulos por planta, que la tecnología tradicional.

4.4 Número de vainas por planta

La variable número de vainas por planta es uno de los parámetros que más relación tiene con el rendimiento y está en dependencia del número de flores que tenga la planta (Tapia, 1987). El número de vainas por planta es variable entre las variedades de frijol. González (1995) reporta que estas oscilan entre 8-18 vainas por planta. En el estudio realizado por Avilés y Centeno (1999) concluye que para la variedad Dor-364 existe un promedio de 8.4 vainas por planta, en la variedad Rojo nacional se obtienen un promedio de 7.4 y en la variedad Estell-90 8.0 vainas por planta.

En este estudio el número de vainas por planta difiere por cada variedad (ver figura 4). La variedad Dor-364 utilizada por los productores Misael Muñoz, Benedicto Obando y José Moreno, produjo 8.1 vainas por planta, la rojo nacional, usada por Julio Báez, Rafael Báez y Agenor López, 6.1 y Estell-90, de Francisco Hernández, Cesar Melgara y Jaime Morales, 9.4.
El cuadro 6 muestra los resultados obtenidos de la variable número de vainas por planta, en las parcelas de evaluación de los productores, al realizar la prueba "t" entre la parcela inoculada y sin inocular se obtiene que no hay diferencias significativas, como $t_s < t_a$ al 95% de probabilidad, se puede afirmar que no existe base estadística para considerar la nueva tecnología como un factor influyente en la formación de vainas, a pesar de la diferencia numérica (ver Figura 4) a favor de la parcela inoculada.

4.5 Numero de granos por vaina

El número de granos por vaina es influenciado por caracteres genéticos y del cultivo (Moreno, 1996 citado por Aviles, 1999). González (1995) reporta que el número de granos por vaina de frijol varía entre 4 y 6 granos.

En esta evaluación los resultados obtenidos fueron muy similares entre las parcelas inoculadas y las sin inocular (ver figura 5) obteniendo una diferencia de 0.1 grano a favor de la parcela inoculada, con valores que oscilan entre 5.5 y 6.5 granos por vaina y 5.4 y 6.5 para la parcela sin inocular.

La figura 6 muestra los resultados obtenidos de la variable numero de granos por vaina en la parcela inoculada y sin inocular de los productores de las diferentes localidades de Nueva Guinea. Al realizar la prueba "t" entre las parcelas inoculada y sin inoculante se obtiene que $t_c < t_t$, al nivel de probabilidad del 95 %, no hay significancia estadística entre los tratamientos. En esta variable no se reflejan resultados ni diferencias numéricas, ni estadísticas.

4.6 Densidad poblacional (miles / ha)

La densidad poblacional es determinante para obtener buenos rendimientos (Palma, 1993). Una densidad de poblaciones débiles al momento de la siembra, significara una menor densidad de plantas a la cosecha (Hemández y Gómez, 1988).

El Instituto Nicaragüense de Tecnología Agropecuaria (INTA, 1995) en la guía tecnológica para la producción de frijol recomienda una densidad de hasta 284,600 plantas por hectárea.

Los resultados de la evaluación reflejan que existe una diferencia numérica significativa (ver figura 6) aun cuando el tratamiento fue igual para ambas parcelas, favoreciendo a las parcelas inoculadas a excepción de Jaime Morales y Benedicto Obando que difieren del resto de productores, esto debido a que el porcentaje de germinación fue superior en la parcela sin inocular según los productores y técnicos que los asisten.

El cuadro 6 muestra los resultados estadísticos obtenidos de la variable densidad poblacional en las parcelas de evaluación de los productores.

Al realizar el análisis estadístico mediante la prueba de " t " se obtiene significación, puesto que, t > t₀, al nivel de 95% de probabilidad, este resultado confirma la diferencia numérica obtenida en las parcelas de los productores a favor de la tecnología de inoculación, es decir, que la inoculación influye de manera efectiva en la densidad poblacional.
4.3 Peso seco de nódulos (en mg)

La fijación de nitrógeno atmosférico se realiza gracias a la actividad de la enzima nitrogenasa del Rhizobium presente en los nódulos. El peso de nódulos permite precisar esa actividad porque su variación está correlacionada positivamente con la actividad nitrogenásica y por lo tanto con la fijación (FAO, 1985a).

La variable peso seco de nódulos por planta muestra que existen diferencias numéricas (ver figura 3) en la mayoría de los casos, favoreciendo a la parcela inoculada, con excepción de el productor Rafael Báez que al igual que en la variable número de nódulos por planta presenta valores inferiores en la parcela inoculada.

Los valores de peso promedio por variedad son: para Dor-364, 64 mg en la parcela con inoculante y 8 mg en la sin inocular; la variedad Esteli-90, 35 mg la inoculada y 18 la sin inocular, Rojo nacional, 38 mg y 32 mg, respectivamente. El presente estudio mostró valores superiores a los estudios realizados en Esteli por Mendoza (1997) y en Chinandega por Sánchez (1998)

El cuadro 6 muestra los resultados de la variable peso seco de nódulos por planta, al realizar la prueba “t” de student, entre la parcela inoculada y sin inocular, se obtiene que existe diferencia estadística altamente significativa entre los tratamientos inoculado y sin inocular, en base a que tc>tt, con un 95% de probabilidad, lo que demuestra que la tecnología de inoculación es superior en la variable peso seco de nódulos por planta, que la tecnología tradicional.
Cuadro 6. Efecto de la inoculación con una mezcla de cepas de *Rhizobium* sobre el número de nódulos por planta, peso seco de nódulos, *densidad poblacional*, número de vainas por planta, número de granos por vaina y rendimiento en el municipio de Nueva Guinea, época de apante (1998-1999).

<table>
<thead>
<tr>
<th>Variables</th>
<th>NN/planta</th>
<th>PSN/planta</th>
<th>DP (miles/ha)</th>
<th>NV/planta</th>
<th>NG/vaina</th>
<th>Rendimiento (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T calculado</td>
<td>3.16</td>
<td>10.93</td>
<td>2.84</td>
<td>2.04</td>
<td>1.03</td>
<td>5.56</td>
</tr>
<tr>
<td>T tabulado</td>
<td>2.36</td>
<td>2.36</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
<td>2.31</td>
</tr>
<tr>
<td>"t" 5%</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
</tbody>
</table>

Leyenda:
- **NN/planta**: número de nódulos por planta.
- **PSN/planta**: peso seco de nódulos.
- **DP (miles/ha)**: Densidad poblacional en miles por hectárea.
- **NV/planta**: número de vainas por planta.
- **NG/vaina**: número de granos por vaina.
- "*t*": Prueba de "t" student, al 95%.
- *: significativo.
- **: altamente significativo.
- NS: no significativo.
4.7 Análisis económico de la tecnología evaluada

4.7.1 Resultados económicos obtenidos

El trabajo de evaluación de las parcelas sin inocular e inoculadas con una mezcla de cepas de Rhizobium, se encontró una diferencia de producción ajustada (5%) de 172.1 kg/ha.

Este resultado se debe principalmente al problema de las altas precipitaciones durante el crecimiento y desarrollo del cultivo de frijol, se produjeron problemas fitosanitarios como la requema (Mustia hilachosa).

El precio del frijol fue valorado en, C$ 8.25/kg, para obtener una tasa de retorno marginal de 13.00 córdobas; o sea que por cada córdoba que invirtieron, ellos recuperaron la inversión hecha, y obtuvieron 13.00 córdobas adicionales de ganancia. (Ver Cuadro 8).

Cuadro 7. Costos variables córdobas (C$) por hectárea (ha)

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Parcela sin inocular</th>
<th>Parcela inoculada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra del inoculante</td>
<td>0.00</td>
<td>65.5</td>
</tr>
<tr>
<td>Mano de obra en la inoculación</td>
<td>0.00</td>
<td>35.6</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>101.1</td>
</tr>
</tbody>
</table>

En esta evaluación los costos variables fueron únicamente el precio del inoculante más el gasto de mano de obra en el proceso de la inoculación, porque se supone que el productor realizó el mismo manejo agronómico en ambas parcelas, o sea que el gasto en córdobas tanto en la siembra, fertilización, limpieza, etc. fue igual para las dos parcelas.

El precio del inoculante es de C$/ha 65.50 y el precio de mano de obra en la inoculación se valoró en C$/ha 35.60.
Cuadro 8. Presupuesto parcial general, en córdobas (C$) por hectárea (ha), en el estudio realizado en Nueva Guinea, época de apante 1998-1999.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Parcela sin inocular</th>
<th>Parcela inoculada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción media en kg/ha</td>
<td>787.18</td>
<td>967.64</td>
</tr>
<tr>
<td>Producción ajustada al 5%</td>
<td>747.82</td>
<td>919.26</td>
</tr>
<tr>
<td>Costos variables, en C$</td>
<td></td>
<td>101.1</td>
</tr>
<tr>
<td>Precio del frijol por kg, en C$</td>
<td>8.25</td>
<td>8.25</td>
</tr>
<tr>
<td>Beneficio bruto en C$</td>
<td>4.331.25</td>
<td>5.328.75</td>
</tr>
<tr>
<td>Beneficio neto en C$</td>
<td>4.331.25</td>
<td>5.257.75</td>
</tr>
<tr>
<td>Tasa de retorno marginal C$</td>
<td></td>
<td>13.00</td>
</tr>
</tbody>
</table>

En este presupuesto únicamente se incluyó la producción obtenida ajustada al 5%, el precio de venta del frijol por kg y el costo variable, omitiendo el resto de gastos del manejo agronómico, porque lo que interesa es saber cuánto genera (T.R.M.) respecto a la inversión (C.V) la tecnología evaluada al ser ésta adoptada por el productor.

Esto significa que el productor por dejar de utilizar la tecnología tradicional para pasar al uso de la nueva tecnología (inoculante); por cada Córdoba invertido en ésta, obtendrá un retorno de 13.00 córdobas más el córdoba de la inversión.

<table>
<thead>
<tr>
<th>Productor</th>
<th>Julio Báez</th>
<th>Rafael Báez</th>
<th>Cesar Melgara</th>
<th>Misael Muñoz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcela</td>
<td>Inoculada</td>
<td>Sin inocular</td>
<td>Inoculada</td>
<td>Sin inocular</td>
</tr>
<tr>
<td>Producción media (kg/ha)</td>
<td>1293.64</td>
<td>1034.91</td>
<td>1423</td>
<td>1293.64</td>
</tr>
<tr>
<td>Producción ajustada 5%</td>
<td>1228.96</td>
<td>938.16</td>
<td>1351.85</td>
<td>1228.96</td>
</tr>
<tr>
<td>Costos que varián (C$/ha)</td>
<td>101.1</td>
<td>_</td>
<td>101.1</td>
<td>_</td>
</tr>
<tr>
<td>Precio del frijol (C$/kg)</td>
<td>8.25</td>
<td>8.25</td>
<td>8.25</td>
<td>8.25</td>
</tr>
<tr>
<td>Beneficio Bruto (C$)</td>
<td>10138.92</td>
<td>7739.82</td>
<td>11152.76</td>
<td>10138.9</td>
</tr>
<tr>
<td>Beneficio Neto (C$)</td>
<td>10037.82</td>
<td>7739.82</td>
<td>11051.66</td>
<td>10138.9</td>
</tr>
<tr>
<td>Tasa de retorno Marginal (C$)</td>
<td>22.7</td>
<td>9.03</td>
<td>11.02</td>
<td>14.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Agenor López</th>
<th>Francisco Hernández</th>
<th>Jaime Morales</th>
<th>Benedicto Obando</th>
<th>José Luis Moreno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con inoc</td>
<td>Sin inoc</td>
<td>Con inoc</td>
<td>Sin inoc</td>
<td>Con inoc</td>
</tr>
<tr>
<td>Parcela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción Media (kg/ha)</td>
<td>517.45</td>
<td>310.47</td>
<td>776.18</td>
<td>517.45</td>
<td>866.7</td>
</tr>
<tr>
<td>Producción Ajustada (kg/ha)</td>
<td>491.58</td>
<td>294.95</td>
<td>737.37</td>
<td>491.58</td>
<td>823.4</td>
</tr>
<tr>
<td>Costos que varían (CS)</td>
<td>101.1</td>
<td>--</td>
<td>101.1</td>
<td>--</td>
<td>101.1</td>
</tr>
<tr>
<td>Precio de campo CS(kg)</td>
<td>8.25</td>
<td>8.25</td>
<td>8.25</td>
<td>8.25</td>
<td>8.25</td>
</tr>
<tr>
<td>Beneficio Bruto CS</td>
<td>4055.5</td>
<td>2433.3</td>
<td>6083.3</td>
<td>4055.5</td>
<td>6793</td>
</tr>
<tr>
<td>Beneficio Neto CS</td>
<td>3954.4</td>
<td>2433.3</td>
<td>5982.2</td>
<td>4055.5</td>
<td>6692</td>
</tr>
<tr>
<td>Tasa de retorno marginal (CS)</td>
<td>15.04</td>
<td>19.05</td>
<td>24.57</td>
<td>0.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>
En la finca del productor Julio Báez, se encontró una diferencia de producción ajustada (5%) de 290.8 kilogramos por hectárea, equivaliendo esto a una diferencia de 6.4 qq / ha.
Como se podrá observar en el Cuadro 9 la diferencia obtenida en los beneficios netos, vendiendo a un precio de 8.25 córdobas el kilogramo, o sean 375.00 córdobas el quintal, fue de 2298.00 por hectárea.
La Tasa de Retorno Marginal obtenida es de 22.7 córdobas, es decir que por cada córdoba invertido en el uso de la nueva tecnología, el productor recupera el Córdoba invertido y obtiene 22.7 córdobas adicionales.

Con el productor, Rafael Báez, donde se llevó a cabo el ensayo de evaluación, se obtuvo una diferencia de producción ajustada de 122.89 kilogramos por hectárea a favor de la nueva tecnología, equivalente a 2.7 qq / ha. Esta diferencia es baja comparada con la del productor anterior debido a que el comportamiento fue similar en ambas parcelas, porque como se puede observar en el Cuadro 6 no se encontró diferencia significativa en cuanto a: presencia de nódulos, peso de nódulos y densidad poblacional entre parcelas.

Sin embargo en el cuadro 9, se puede ver que la diferencia obtenida entre los beneficios netos es de 912.76 córdobas por hectárea. Con esto la tasa de retorno marginal que se obtuvo fue de 9 córdobas con 3 centavos. O sea que por cada córdoba invertido en el gasto extra que genera la nueva tecnología se obtienen 9.03 córdobas adicionales por cada hectárea.

Con el productor, Misael Muñoz, en la evaluación se obtuvieron resultados siempre positivos y está ubicada como finca de referencia para el uso de inoculante, pues aquí se obtuvieron los rendimientos más altos de todos los ensayos (1536 kg/ha)

La diferencia de producción ajustada(5%) encontrada es de 184.3 kilogramos por hectárea, lo que es igual a 4 qq / ha, a favor de la tecnología evaluada.
En el Cuadro 9, se refleja la diferencia entre los beneficios netos obtenida, la que es de 1419.4 córdobas por cada hectárea establecida.
La Tasa de Retorno Marginal encontrada fue de 14.04 córdobas, es decir, que por cada córdoba invertido en dicha tecnología, el productor recupera la inversión y obtiene 14.04 córdobas adicionales.

César Melgara, en las parcela de evaluación, establecidas en la finca de este productor, se logró encontrar una diferencia de producción ajustada (5%) de 147.5 kilogramos por hectárea a favor de la tecnología del inoculante, esta diferencia equivale a 3.25 qq / ha establecida.

La diferencia encontrada de los beneficios netos refleja un valor de 1115.6 córdobas por hectárea, o sea que la nueva tecnología genera ese aumento respecto a la tecnología tradicional.

Con esta diferencia se obtiene una Tasa de Retorno Marginal igual a 11.02 córdobas, es decir que por cada córdoba que se invierte en la adquisición de la tecnología evaluada este productor recupera lo invertido y adquiere 11.02 córdobas de más.

Los resultados económicos obtenidos en la finca de Agenor López, son similares a los registrados con el productor Misael Muñoz. Obteniendo una diferencia de producción ajustada(5%) de 196.63 kilogramos por hectáreas, equivalente esto a 4.3 qq / ha que se establece.

En el Cuadro 10, se puede observar una diferencia de los beneficios netos igual a C$ 1521.1 córdoba por hectárea, a favor de la tecnología evaluada.

El valor encontrado como Tasa de Retorno Marginal es de C$ 15.04 córdobas, mejor dicho que por cada córdoba que el productor invierte en la nueva tecnología, recupera C$ 15.04 córdobas adicionales más lo invertido.

En la parcela de Francisco Hernández, el análisis económico refleja que se produjo una diferencia de producción ajustada(5%) de 245.8 kilogramos por hectárea, lo que indica una diferencia de 5.4 qq / ha.
Con esta diferencia de producción y con el precio de venta que se refleja en el Cuadro 10, se obtuvo una diferencia de beneficios netos igual a C$ 1926.7 córdobas por hectárea a favor de la nueva tecnología evaluada.

Esta diferencia de beneficios netos produce una Tasa de Retorno Marginal equivalente a C$ 19.06, lo que indica que por cada Córdoba invertido en el costo extra de la tecnología evaluada el productor obtiene lo invertido más C$19.06 de ganancia.

Jaime Morales. Esta finca es una en la que se encontró una diferencia muy significativa de producción. El Cuadro 10, indica que dicha diferencia de producción ajustada(5%) obtenida es de 313.4 kilogramos, o sea, una diferencia de 6.89 qq / ha.

Esta diferencia de producción refleja una diferencia de beneficios netos de C$ 2585.55 a favor de la nueva tecnología.

Con esta diferencia de beneficios netos se obtuvo una Tasa de Retorno Marginal de C$ 24.6, es decir que al adoptar la tecnología validada e incurrir en la inversión extra, el productor recupera la inversión y obtiene C$ 24 córdobas con 6 centavos de más, indicando esto una gran rentabilidad del inoculante.

Benedicto Obando. En las parcelas de evaluación, establecidas en la finca de este productor, se obtuvieron rendimientos sumamente bajos en ambas parcelas, esto se debió a un manejo deficiente a las parcelas, producto de un desinterés del productor y del técnico que lo asistió.

El rendimiento en ambas parcelas fue similar (Cuadro 10), con una diferencia de producción ajustada (5 %) de 20.7 kilogramos por hectárea a favor de la tecnología evaluada, esta diferencia equivale a 0.46 qq/ha. Dicha similitud se debió también a que la densidad de plantas fue mayor en la parcela sin inoculante.

La diferencia encontrada de los beneficios netos refleja un valor de C$ 61.04 por hectárea, ósea que la nueva tecnología genera ese aumento respecto a la tecnología tradicional.
Con esta diferencia se obtiene una tasa de retorno marginal igual a C$ 0.6, es decir que por cada Córdoba que el productor invierte en la adopción de la nueva tecnología este productor recupera lo invertido y adquiere C$ 0.6 adicionales.

José Luis Moreno. En la propiedad de este productor se estableció una parcela inoculada y otra sin inocular, se obtuvieron resultados regulares (Cuadro 10), encontrándose una diferencia de producción ajustada (5%) de 68.8 kilogramos por hectárea, lo que refleja rendimientos similares entre ambas parcelas.

La diferencia de los beneficios netos reflejó un valor de C$ 466.6 por hectárea. A favor de la tecnología del inoculante.

Con esta diferencia de beneficios netos se obtuvo una tasa de retorno marginal de C$ 4.5 por hectárea, es decir que por cada Córdoba invertido se recupera dicho Córdoba y 4.5 córdobas extras.

5.8 Sonddeo sobre la percepción del productor al inoculante

Se realizó un sondeo con los productores donde se estableció la evaluación de la tecnología de una mezcla de cepas de Rhizobium como tratamiento alternativo, enfocado a conocer la percepción que el productor de frijol tuvo al utilizar el inoculante.

Dicho sondeo consistió en una encuesta con 73 productores, de los cuales el 94.5% recibió el inoculante y de estos el 98.6% utilizaron el producto.

A la pregunta de cómo considera el crecimiento del cultivo en la parcela inoculada comparada con la sin inocular, la respuesta de los productores fue que el 96.7% manifestó que dicho crecimiento fue mejor, el 3.3% consideró que el crecimiento del cultivo fue igual y nadie dijo que fue peor en la parcela inoculada. Esto indica que un buen porcentaje de los productores logró notar una diferencia importante en el cultivo al utilizar el inoculante.

En la pregunta, de cómo considera la presencia de nódulos en las raíces de la planta de frijol; la respuesta fue que el 100% de los productores consideraron que la presencia de nódulos fue abundante.

En cuanto a la pregunta, en qué parcela considera que la producción fue mayor, se respondió de la siguiente manera; el 96.7% expresó que el rendimiento fue mayor en la parcela inoculada y únicamente el 3.3% dijo lo contrario.

![Gráfico de barras mostrando la producción mayor en la parcela inoculada](image)

Respecto a la pregunta, cómo considera el producto o inoculante; la respuesta dada por los productores, manifiesta que el 61.76% de ellos expresaron que el producto es bueno, el 35.3% consideró que es muy bueno, únicamente el 2.94% dijo que es regular y nadie expresa que dicho producto es deficiente. Por lo que se deduce que el producto entregado y producido por GRAINCO, produce efectos positivos sobre el rendimiento en la producción de frijol común, en la zona de Nueva Guinea, en la época de apante.
5. CONCLUSIONES

Tomando en cuenta los resultados obtenidos en los análisis: Estadísticos, descriptivos, económicos y de percepción del productor, podemos concluir que:

- Los tratamientos inoculados presentaron rendimientos significativos con respecto a los tratamientos sin inocular. En la parcela inoculada se obtuvo un promedio de 968 kg / ha y en la sin inocular 787 kg / ha, lo cual representa una diferencia de 181 kg / ha, a favor de la parcela inoculada.

- El análisis económico reporta que la tecnología de inoculación representa beneficios para el productor en las condiciones propias de la zona, los datos reportan como promedio un beneficio neto de C$ 5258/ha, en parcela inoculada y de C$ 4331/ha, en la parcela sin inocular, lo que representa una diferencia de C$ 937/ha.

- La percepción de los productores acerca del inoculante fue positiva en un alto porcentaje de ellos, y están dispuestos a darle seguimiento a la tecnología, 97 % de los agricultores encuestados consideran que el inoculante produce efectos positivos, el 3% restante considera el producto como regular.

- En las variables medidas los resultados reflejan diferencias significativas en las variables: número de nódulos por planta, peso seco de nódulos y densidad poblacional; en las variables número de vainas por planta y número de granos por vaina se encontraron diferencias numéricas, pero no estadísticas.
6. RECOMENDACIONES

Basándose en las conclusiones, se sugieren las siguientes recomendaciones:

• Se deben realizar diversos estudios de evaluación en zonas con tradición de cultivos de frijol, con el objetivo de conocer la respuesta del inoculante a diferentes condiciones edafoclimáticas y de manejo del productor.

• Realizar un análisis microbiológico para determinar la población de cepas de Rhizobium nativas y de microorganismos que puedan afectar la nodulación.

• Determinar los niveles de micro elementos, en el suelo, dada la importancia de estos en el proceso de fijación simbiótica de nitrógeno.

• Establecer las parcelas de evaluación en parcelas de productores líderes, que estén relacionados con agencias que brinden asistencia técnica agropecuaria, para favorecer el incremento de la difusión de la tecnología evaluada.

• Promover el uso del inoculante, en la zona de Nueva Guinea, en la época de apante, dada la importancia que tiene en los rendimientos de campo y beneficios económicos.
7. BIBLIOGRAFÍA

• MAG-FOR. 1997. Estudio preliminar de la cadena agroalimentaria de maíz y frijol, Managua, Nicaragua. 80 p.

<table>
<thead>
<tr>
<th>Productor</th>
<th>Altura (m.s.n.m)</th>
<th>Coordenadas</th>
<th>Variedad</th>
<th>Análisis de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ph</td>
</tr>
<tr>
<td>Julio Baez</td>
<td>175</td>
<td>N: 11°42'31"</td>
<td>Rojo Nac.</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°21'52"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rafael Baez</td>
<td>190</td>
<td>N: 11°42'31"</td>
<td>Rojo Nac.</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°21'52"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misael Munoz</td>
<td>200</td>
<td>N: 11°42'31"</td>
<td>Dor - 364</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°21'52"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agenor Lopez</td>
<td>185</td>
<td>N: 11°44'30"</td>
<td>Rojo Nac.</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°31'32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francisco Hernández</td>
<td>165</td>
<td>N: 11°44'30"</td>
<td>Esteli - 90</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°31'32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaime Morales</td>
<td>165</td>
<td>N: 11°41'25"</td>
<td>Esteli - 90</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°26'44"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benedicto Obando</td>
<td>185</td>
<td>N: 11°42'31"</td>
<td>Dor - 364</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°21'52"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jose L Moreno</td>
<td>165</td>
<td>N: 11°42'31"</td>
<td>Dor-364</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 84°21'52"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cesar Melgara</td>
<td>170</td>
<td>N: 12°36'31"</td>
<td>Esteli - 90</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O: 85°37'35"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROGRAMA DE MONITOREO EN FRIJOL DE LA EPOCA DE POSTRERA 1998
SECRETARIA DEL PL – 480, TITULO III
HOJA DE ENCUESTA A APLICAR

DEPARTAMENTO __________ MUNICIPIO __________ COMARCA __________

1.- Nombre del Productor: ________________________________ FECHA __________

2.- Que área sembró de frijol ______ mz

3.- Como preparó el suelo para la siembra de frijol:
 a.- Con tractor b.- Con bueyes c.- Al esqueque d.- Frijol tapado

4.- Que variedad sembró
 a.- Criolla b.- Mejorada

5.- Que cantidad de semilla utilizó en ________ lbs por manzana.

6.- Como controló las malezas en su parcela de frijol.
 a.- Con herbicidas b.- Manual c.- Otros

7.- Cuando aplicó el herbicida
 a.- Antes de la siembra b.- Después de la siembra

8.- Con que producto controló las plagas
 a.- Con químicos b.- Con biológicos c.- Con naturales

9.- Que producto químico aplicó en el control de las plagas
 Producto ______________ Dosis ______________ Cuando aplicó ______________

10.- Que producto biológico aplicó en el control de las plagas
 Producto ______________ Dosis ______________ Cuando aplicó ______________

11.- Que producto natural aplicó en el control de las plagas
 Producto ______________ Dosis ______________ Cuando aplicó ______________

12.- Que tipo de fertilización aplicó en la parcela
 a.- Fertilización química b.- Fertilización orgánica c.- Otros
13.- Tipo de fertilizante químico aplicado en la parcela
 Dosis de completo ____________________________ Cuando aplicó ____________________________
 Dosis de Urea ____________________________ Cuando aplicó ____________________________

14.- Tipo de fertilizante orgánico aplicado en la parcela
 Dosis ____________________________ Cuando aplicó ____________________________

15.- Recibió el inoculante a tiempo a.- Sí b.- No

16.- Qué institución le entregó el inoculante: ____________________________

17.- Que cantidad de inoculante recibió ____________________________

18.- Dosis de inoculante que le recomendaron ____________________________

19.- Utilizó el producto para inocular la semilla: a.- Sí b.- No

20.- Toda la semilla que sembró la inoculó a.- Sí b.- No

21.- Área sembrada con inoculante ______ mz Área sembrada sin inoculante ______ mz

22.- Recibió capacitación para inocular la semilla a.- Sí b.- No

23.- De quién recibió la capacitación para la inoculación de la semilla ____________________________

24.- Como considera la capacitación recibida
 a.- Buena b.- Regular c.- Mal

25.- Quién hizo el procedimiento de la inoculación de la semilla de frijol
 a.- El mismo productor b.- El vecino c.- El técnico que asiste

26.- Que tipo de recipiente utilizó para hacer la mezcla con el inoculante
 a.- balde plástico b.- balde metálico limpio c.- Otros, especifique ______

27.- Que cantidad de agua agregó al recipiente con el inoculante
 a.- 0.5 litro b.- 1 litro c.- 1.5 litros d.- 2 litros

28.- De donde tomó el agua que agregó al inoculante
 a.- De grifo (potable) b.- De pozo c.- De río d.- De noria

29.- La mezcla de agua con el inoculante la preparó
 A.- bien b.- Regular c.- mal
30. A la mezcla preparada le agregó
 a. 4 cucharadas de aceite b. 4 cucharadas de leche en polvo c. Nada

31. Que cantidad de semilla inoculó con la mezcla recomendada
 a. 0.5 quintal b. 1 quintal c. 1.5 quintal d. 2 quintales

32. Cuando sembró la semilla, esta estaba
 a. humeda b. Seca

33. Cuanto tiempo pasó desde que aplicó la mezcla a la semilla hasta el momento de la siembra __________

34. Como fue el crecimiento del cultivo con la semilla inoculada comparándose con la sin inocular
 a. Mejor b. Igual c. Peor

35. Pudo observar pelotitas (múdulos) pegadas en las raíces de la planta de frijol
 a. Si b. No

36. Si contesta si a la pregunta anterior, como considera la presencia de pelotitas

37. Que rendimiento en frijol tuvo o espera en su parcela inoculada _______ quintales /mz

38. En que parcela considera que la producción de frijol fue mejor.
 a. Donde aplicó el polvito negro b. Donde no aplicó el polvito

39. En caso de no poder hacer una comparación sobre la producción de frijol. Como considera la producción actual aplicando el polvito negro con respecto a la producción de los años anteriores.
 a. Mejor b. Igual c. Baja

40. Si la producción obtenida fue baja, diga a que se debió

41. Como considera el producto o polvito negro (inoculante)