TRABAJO DE GRADUACION

DOCTORADO EN CIENCIAS DE LA AGROECOLOGIA

Modelo de conversión agroecológica de un sistema de producción de *Moringa oleifera* Lam., en función de principios agroambientales en la zona seca de Nicaragua.

AUTOR
Alvaro Noguera Talavera

ASESORES:
PhD. Nadir Reyes Sánchez
PhD. Bryan Mendieta Araica

Managua, septiembre 2019
UNIVERSIDAD NACIONAL AGRARIA
FACULTAD DE AGRONOMIA

TRABAJO DE GRADUACION
DOCTORADO EN CIENCIAS DE LA AGROECOLOGÍA

Modelo de conversión agroecológica de un sistema de producción de Moringa oleifera Lam., en función de principios agroambientales en la zona seca de Nicaragua.

AUTOR
Ing. Alvaro Noguera Talavera.

ASESORES:
PhD. Nadir Reyes Sánchez
PhD. Bryan Mendieta Araica

Managua, septiembre del 2019
ÍNDICE DE CONTENIDO

AGRADECIMIENTOS ... i
RESUMEN ... i
ABSTRACT ... ii

I. INTRODUCCION ... 1

II. OBJETIVOS .. 6
 2.1. Objetivo general ... 6
 2.2. Objetivos específicos .. 6

III. MARCO CONCEPTUAL SOBRE LOS ELEMENTOS Y FACTORES RELATIVOS A SISTEMAS DE PRODUCCION AGROECOLÓGICA 7
 3.1 La visión sobre los retos de la agricultura nicaragüense frente a expresiones de tipo climática, y de desarrollo rural. .. 7
 3.2 Bases teóricas relativas al estudio del proceso de conversión hacia sistemas agroecológicos. .. 11
 3.3 El contexto del impulso de la producción de Moringa y su papel en sistemas de producción con enfoque agroecológico. .. 18
 3.3.1 Características y usos que justifican la selección de Moringa oleifera como componente productivo en modelos de agricultura ecológica. 20

IV. MATERIALES Y MÉTODOS ... 22
 4.1 Localización del área experimental. ... 22
 4.1.1 Características biofísicas del área experimental. ... 22
 4.2 Actividades de investigación ... 24
 4.3 Diseño del sistema agroecológico: Caracterización y determinación de interacciones entre componentes. ... 24
 4.4 Tipos de biodiversidad constituyentes de modelo productivo de M. oleifera. 26
 4.4.1 Biodiversidad productiva. ... 26
 4.4.2 Biodiversidad asociada. ... 27
 4.4.3 Biodiversidad acompañante. .. 31
 4.5 Evaluación de las propiedades del suelo y los cambios como influencia de las prácticas de manejo... 32
 4.5.1 Estado del suelo. .. 32
 4.6 Evaluación de la funcionalidad de los componentes asociados a dos sistemas de manejo de M. oleifera como indicadores del proceso de conversión. 33
 4.7 Determinación del efecto de las medidas de manejo sobre la productividad del sistema agroecológico de M. oleifera. ... 34
 4.7.1 El rendimiento como indicador. .. 34
4.7.2 Diversidad productiva ... 35
4.7.3 Índice de Utilización de la Tierra (IUT)... 36

V. RESULTADOS Y DISCUSIÓN ... 37

5.1 Principios aplicados a la primera fase de la conversión agroecológica como modelo de una agricultura sostenible... 37

5.1.1 Fase I de Conversión agroecológica del sistema productivo de semilla de M. oleifera... 37

5.1.2 Diversidad de organismo como efecto de la modificación del hábitat. 39

5.2 Diversidad y distribución de la macrofauna edáfica por sistema de manejo...... 41

5.3 Fase 2 de Conversión agroecológica del sistema productivo. 44

5.3.1 Balance de las poblaciones de artrópodos por sistemas de manejo. 45

5.3.2 Indicadores de mejoramiento de la salud del suelo como estrategia para incrementar la productividad... 49

5.4 Mantenimiento de la productividad del sistema agroecológico, a partir de incremento en la eficiencia de los procesos ecológicos asociados a la diversidad biológica y utilización del suelo. ... 56

5.5 Elementos resultantes sobre las ventajas y oportunidades del modelo......... 58

VI. CONCLUSIONES ... 62

VII. REFERENCIAS BIBLIOGRAFICAS ... 65

VIII. ANEXOS ... 75
AGRADECIMIENTOS

A mi familia y las personas que nos animan e inspiran a ser cada día mejores, tanto en lo profesional como en lo humano.

A quienes materializan las oportunidades que la Universidad Nacional Agraria como casa de enseñanza y aprendizajes, brinda a la sociedad nicaragüense.

A los estimados amigos y colegas, Dr. Nadir Reyes Sánchez, Dr. Bryan Mendieta Araica, y Dr. Guillermo Castro Marín, por sus enseñanzas, ya que además de grandes profesionales, representan valiosos guías para el aprendizaje en la vida de muchos.
<table>
<thead>
<tr>
<th>ÍNDICE DE CUADROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clasificación textural del suelo en áreas experimentales con M. oleifera en la finca Santa Rosa, Universidad Nacional Agraria. 23</td>
</tr>
<tr>
<td>2. Biodiversidad de artrópodos asociados a dos sistemas de producción de semilla de M. oleifera en la Universidad Nacional Agraria 40</td>
</tr>
<tr>
<td>3. Cambios en la diversidad de Artrópodos en dos sistemas de manejo de Moringa oleifera 49</td>
</tr>
<tr>
<td>4. Cambios en las propiedades químicas del suelo en dos sistemas de manejo de Moringa oleifera 50</td>
</tr>
<tr>
<td>5. Cambios en la diversidad de macrofauna edáfica en dos sistemas de manejo de Moringa oleifera 51</td>
</tr>
</tbody>
</table>
ÍNDICE DE GRÁFICOS

1. Conceptualización agroecológica de Mercados Alternativos para Sistemas de Seguridad Alimentaria y nutricional ... 9

2. Relación intensificación mediante prácticas y funcionalidad: Base para la productividad y sostenibilidad del agroecosistema .. 13

3. Fases de la conversión agroecológica del sistema de producción de M. oleifera 17

4. Distribución de la precipitación durante los periodos de establecimiento, manejo y evaluación de diseño agroecológico en la finca Santa Rosa. UNA......................... 22

5. Estructura-distribución de la biodiversidad asociada a los sistemas de producción de M. oleífera en la Finca Santa Rosa, Universidad Nacional Agraria..................... 25

6. Aspectos metodológicos del muestreo de macrofauna en sistemas productivos de M. oleífera ... 28

7. Simbología utilizada para la elaboración de diagramas de sistemas. Tomada de Odum, 1971 ... 34

8. Síntesis de los principios teóricos y prácticas agronómicas sobre fases de conversión agroecológica implementados en un sistema de producción de semillas de M. oleifera 38

10. Densidad de macrofauna edáfica por profundidad de muestreo en sistemas productivos de M. oleífera en la Universidad Nacional Agraria.................................... 42

11. Distribución porcentual de grupos funcionales en el modelo de conversión agroecológica del sistema de producción de semilla de M. oleífera. 46

12. Similitud en la composición de artrópodos en conversión agroecológica y manejo convencional, en relación a áreas adyacentes a los sistemas de producción de semilla de M. oleífera. ... 48

13. Diagrama de distribución de las familias más importantes de la macrofauna edáfica en los componentes principales (CP1 y CP2) a partir de variables de suelo en dos sistemas de manejo de M. oleifera en la Universidad Nacional Agraria.......... 53

14. Producción de frutos por planta en dos asocios de M. oleifera con leguminosas forrajeras (C. ensiformis, y C. brasiliensis)... 56

15. Producción de semillas por fruto en dos sistemas de manejo de M. oleifera 57
16. Diagramas de Odum para representación de componentes del modelo de producción convencional de *M. oleifera* ... 59

17. Diagramas de Odum para representación de componentes del modelo de producción agroecológica de *M. oleifera* ... 60

ÍNDICE DE ANEXOS

1. Descripción de la simbología utilizada en la representación de los modelos convencional, y conversión agroecológica analizados en el trabajo……….75

2. Listado de arvenses identificadas en dos sistemas de producción de semilla de *M. oleifera* ...76

3. Orden, familias y número de especies por familia y proporción por individuos de artrópodos en dos sistemas de manejo de *M. oleifera* en la Universidad Nacional Agraria, Nicaragua...77

4. Lista de especies representativas determinadas por número de individuos encontrados en los sistemas de manejo...78
RESUMEN

Con el objetivo de diseñar una propuesta de modelo para la conversión agroecológica de un sistema productivo de *M. oleifera*, con base en principios agroambientales, se formuló un plan de investigación para un periodo de tres años, el que fue desarrollado bajo un enfoque de evaluación de tipo longitudinal, y comparación con un sistema de manejo convencional en la unidad productiva Santa Rosa, en Managua, Nicaragua. El diseño, manejo y evaluación del modelo productivo, tuvo como base la aplicación de principios agroecológicos como incremento de la biodiversidad a través de la diversificación de cultivos, promoción de suelo saludable y reducción del uso de insumos externos. Para la evaluación fueron establecidas parcelas experimentales, a razón de 4 por sistema de manejo. Los indicadores fueron: diversidad y funcionalidad de la macrofauna edáfica, cambios en las propiedades químicas del suelo, diversidad y funcionalidad de los artrópodos asociados al sistema, y el efecto de las prácticas sobre la productividad del sistema. Los resultados muestran una notable funcionalidad del proceso de diversificación de cultivos, al propiciar una reducción en el uso de insumos externos para fertilización, mejoramiento de las características químicas y biológicas del suelo, mantenimiento de los indicadores de diversidad y, el mantenimiento de la productividad por el uso sostenible del suelo. El diseño basado en el manejo de la biodiversidad productiva, asociada y acompañante, representa una alternativa de agricultura sostenible en la zona seca de Nicaragua, quedando la posibilidad de mejora mediante las experiencias de productores, características biofísicas y perspectivas económicas.

Palabras claves: Sostenibilidad, resiliencia, funcionalidad, diseños agroecológicos.
ABSTRACT

With aims to design a framework proposal to agroecological conversion of *M. oleifera* productive system based on agricultural and environmental principles, it was make a plan of research with a period of three years, which was development considering a research approach of long term, comparing with conventional system of *M. oleifera* at Santa Rosa farm, belong to National Agrarian University, in Managua, Nicaragua. The management design and productive model evaluation, were based on application of agroecological principles such as biodiversity increase through crop diversification, promoting a soil health and reduction in the use of pesticide, fertilizing and others external input. To evaluating were established four experimental plots by management system. The indication usefull were: Diversity and role of edaphic macrofauna, and arthropods, chemical and biologist change of the soil, and management and its effects on the productive systems. The results show a high functionality of the crop diversification process, promoting reduction of external input to fertilization, improving the soil health, and holding of diversity and productivity indicators, due to the sustainable practices. The design that is hold by the management of productive biodiversity, associated and complementary, represent a sustainable agriculture alternative in the dry Nicaragua zone, with the possibility of improving it, through the farmer expertise, biophysics conditions and economical perspective.

Key words: Sustainability, resilient, funtionability, agroecological design
I. INTRODUCCION

Los diversos análisis de contexto de la agricultura como eje de desarrollo en países de América Latina, entre ellos el más reciente presentado por CEPAL, FAO, IICA, (2017), han identificado la necesidad de armonizar la contribución de la agricultura y de los territorios rurales con objetivos de desarrollo sostenible (ODS); destacando entre los mecanismos la mejora de la productividad agrícola bajo los principios de integralidad y enfoque de sistema.

Candelaria-Martínez et al., (2011) y Sarandón y Flores (2014), plantearon que la especialización dentro de la agricultura ha propiciado la implementación de innovaciones técnicas que soslayan elementos claves para el manejo y evaluación de los sistemas de producción, siendo el enfoque holístico (basado en la integración de los aspectos sociales, culturales, climáticos, o las propiedades físicas, químicas y biológicas del suelo) la determinante para garantizar el éxito en la práctica, de diferentes modelos de agricultura; y evitar efectos negativos sobre los recursos naturales que proporcionan los medios de vida a familias del entorno rural.

Desde el punto de vista tecnológico, la transformación de la agricultura nicaragüense demanda una transformación hacia un modelo productivo más eficiente tanto de los procesos de producción, como de la tecnología implementada. La trasformación del modelo productivo implica mayor diversificación de rubros, o sea, ir más allá de la tradicional producción de unos pocos rubros de exportación (café, caña de azúcar, arroz, carne). Dicha transformación debe complementarse con la innovación e implementación de tecnología ambientalmente sostenible para que el incremento de la producción no sea producto del aumento anual de superficie; sino, debido a una mayor eficiencia de los procesos.

La transformación de la agricultura en correspondencia con objetivos de desarrollo, debe conllevar una reforma en la política crediticia, que promueva un financiamiento accesible desde el punto de vista de bajos intereses y que incluya tasas preferenciales para rubros no tradicionales que tienen buen posicionamiento en el mercado tanto nacional como internacional. Así mismo, desde el punto de vista financiero, mayor acceso a créditos debe estar acompañado por una política de mercados con precios justos y circuitos cortos de
comercialización para incrementar el margen de ganancias a medianos y pequeños productores.

Desde una dimensión más humana y social, los procesos educativos y de formación deben transcender el carácter instructivo y prescriptivo tradicional, y enfatizar en la construcción de conocimientos que promuevan el abordaje sistémico de la agricultura, interiorizando en su inherente actividad colectiva y cohesiva; y apropiación de la naturaleza para la conservación de los servicios que proveen los agroecosistemas manejados a partir de principios de sostenibilidad.

Este contexto descrito, representa un reto que solamente puede ser abordado con alternativas integrales, multidimensional, e interdisciplinarias como lo asume la agroecología, según lo expuesto por Gómez et al. (2015), y los principios que respaldan esta ciencia; siendo la expresión tangible de dichos principios los sistemas y prácticas agroecológicas a diferentes escalas socioeconómicas y espacio-temporales; así como el empoderamiento y fortalecimiento de los movimientos de productores como sujetos de desarrollo, en cuyo caso, MAONIC y otras organizaciones campesinas nicaragüenses, representan un referente latinoamericano de la importancia del empoderamiento social para la implementación de modelos de agricultura, y la transferencia de conocimientos generados en la experimentación campesina, y cuyo impacto se fundamenta en lo económico, social, cultural, ambiental y ético, definido por Álvarez-Salas et al., (2014) como el carácter multidimensional de la agroecología.

Como parte del abordaje de la problemática de la agricultura nicaragüense se pone en contexto la necesidad de innovar y documentar procesos asociados a la conversión de una agricultura convencional a una con racionalidad agroecológica, destacándose la búsqueda y validación de diseños agroecológicos altamente diversos, promotores de interacciones entre los elementos constituyentes; resilientes y adaptados mediante el uso de especies promisorias, y fáciles de adoptar y manejar por parte de las familias para mejorar la seguridad alimentaria, los beneficios económicos y servicios ambientales.

En el entendimiento de los componentes de la biodiversidad productiva del modelo propuesto, se visualiza la pregunta: ¿Por qué la especie Moringa oleifera como cultivo principal de este modelo?
Se seleccionó la especie *Moringa oleifera* cuyo rango de adaptación según Magaña-Benítez, (2012) corresponde a zonas secas y semiárida, la especie tolera periodos prolongados de sequías (Barche *et al*., 2013), 3 a 6 meses; es de rápido crecimiento (Leonard, 2018), tiene distribución en un rango de precipitaciones entre 250 y 1500 mm/año y suelos de textura franca y pH entre 5 y 9; y temperaturas entre 25 y 35°C (Palada y Chang, 2003).

La producción de Moringa como eje de desarrollo puede ser implementada desde el enfoque de cadena/sistema de valor (producto) por los siguientes factores: Es rentable por el bajo costo de producción, debido a que su distribución natural en Nicaragua a partir de su introducción en 1920 permite verlo como un recurso local, los actuales nichos de mercado son una ventana para iniciativas de producción y comercialización, la posibilidad de organización de colectivos de productores para su cultivo, procesamiento y agregación de valor; oportunidades de inclusión de las mujeres dentro de la cadena productiva, pocas externalidades negativas bajo un modelo de producción sostenible, y oportunidades de certificación para su comercialización en mercados de productos orgánicos.

Complementariamente, existen pocas experiencias nacionales de sistematización con enfoque de funcionamiento de agroecosistemas con *M. oleifera*: La incipiente iniciativa de promoción de sistemas de producción con *M. oleifera* como cultivo para la producción de semillas y sus derivados, acarrea consigo un vacío de información que debe ser llenado con un enfoque de análisis complejo y/o de funcionamiento del agroecosistema derivado de un modelo de manejo agroecológico.

Este trabajo tuvo como propósitos diseñar, establecer, manejar y evaluar con enfoque de sistema un modelo de conversión agroecológica de un sistema productivo de semillas de *M. oleifera*, enfatizando en la aplicación de principios de agroecología como planificación y manejo de la biodiversidad y funcionalidad de los componentes del sistema, para mejorar las propiedades químicas y biológicas del suelo y productividad como beneficios del modelo; propiedades que fueron evidenciadas mediante la comparación con un sistema manejado de manera convencional, lo que a consideración de Sarandón, (2002) es una ruta lógica para la construcción de indicadores de sustentabilidad en el área agropecuaria.
Desde la base conceptual del proceso de conversión de sistemas manejados convencionalmente a sistemas agroecológicos, la ruta de conversión estuvo marcada por la sustitución de insumos inorgánicos, y aplicación de compost, mediante lo cual se promovió una menor dependencia de insumos externos y costos de producción, y la reducción de externalidades asociadas a contaminación del suelo, inclusión de leguminosas como cobertura, fijadoras de nitrógeno atmosférico y mejoradoras de las características físicas, químicas y biológicas del suelo; el principio de la diversificación fue implementado a través de policultivo, prácticas de rotación en el tiempo, y establecimiento de hábitat para biodiversidad funcional y biodiversidad auxiliar. Complementariamente los mecanismos de rediseño del sistema permitieron modelar una agricultura de procesos ecológicos.

Con el propósito de construir una secuencia lógica en el abordaje de la temática, el documento ha sido organizado en cuatro secciones medulares: Se presenta inicialmente, un marco conceptual que aborda los elementos y factores, que desde una visión de sostenibilidad debe aportar a mitigar y sostener la productividad ecológica frente a un contexto de degradación ambiental progresiva, y empobrecimiento de la familia rural. En coherencia con la temática, se establecen los elementos epistemológicos relativos al proceso de conversión agroecológica, y se resume la funcionalidad de las prácticas implementadas, en correspondencia con los elementos teóricos del modelo de conversión.

En una segunda parte, se presenta el detalle de los métodos y marco metodológico de la investigación, como evidencia-soporte de los datos e información que se presenta, como resultado de los tres años de investigación.

Los resultados son presentados en función de las fases del proceso de conversión agroecológica, y los principios y prácticas, además de resultados que se generan; todo bajo una lógica de análisis sistémico para entender la importancia de la integración de componentes para la sostenibilidad del sistema.
Finalmente, se presentan conclusiones e implicaciones que sugieren el logro de las metas del trabajo, en cuanto a la construcción del modelo, y los elementos para un avance hacia el posicionamiento de una investigación y conversión de la agricultura con un verdadero enfoque agroecológico.

Como un apartado complementario, se presentan tres publicaciones, en formato, artículo científico, que son resultados con análisis a mayor profundidad para difusión de las ventajas del modelo a la conservación de los recursos naturales, y el fortalecimiento mediante evidencias científicas, de la pertinencia de la agroecología como ciencia de carácter holístico.
II. OBJETIVOS

2.1. Objetivo general
Diseñar un modelo de producción agroecológica de *M. oleifera*, con enfoque de sistema, para la toma de decisiones sobre las estrategias del proceso de conversión agroecológica.

2.2. Objetivos específicos
1. Evaluar el diseño y manejo de un sistema agroecológico de *M. oleifera* mediante la aplicación de bases teóricas y metodológicas para el diseño, manejo y evaluación, en contraste con un sistema convencional.

2. Evaluar la diversidad y funcionalidad de los componentes constituyentes del modelo de producción agroecológica de *M. oleifera* como indicadores de las fases del proceso de conversión, en contraste con un sistema convencional.

3. Analizar el efecto de las medidas de manejo sobre la productividad del modelo de producción agroecológica de *M. oleifera*, en contraste con un sistema convencional.

II. 1. Preguntas de investigación:
1. ¿Es necesario la implementación de una gran cantidad de prácticas para promover cambios en la dinámica productiva de un agroecosistema?
2. ¿Cuáles son las prácticas que promueven notable efectividad en la transformación de la estructura y funcionalidad de los componentes de un agroecosistema?
3. ¿Es posible lograr una mayor eficiencia en la conversión agroecológica, a través del incremento de la agrobiodiversidad?
4. ¿Cuáles son los indicadores que permiten identificar la funcionalidad de los componentes del agroecosistema, durante el proceso de conversión agroecológica?
5. ¿En cuánto incide la implementación de manejo agroecológico en la productividad del agroecosistema?
III. MARCO CONCEPTUAL SOBRE LOS ELEMENTOS Y FACTORES RELATIVOS A SISTEMAS DE PRODUCCION AGROECOLÓGICA.

3.1 La visión sobre los retos de la agricultura nicaragüense frente a expresiones de tipo climática, y de desarrollo rural.

De acuerdo con Salmerón y Valverde, (2016), en un contexto actual de la agricultura Nicaragüense caracterizada por la existencia de suelos degradados, baja productividad por sistemas de manejo poco eficientes (FUNICA, 2012) y, en otros casos baja aceptación y adopción de tecnologías, persistencia de plagas y enfermedades; y notable variabilidad climática por efecto de cambio climático, no cabe duda sobre la necesidad de implementar modelos de agricultura que promuevan de acuerdo con Altieri y Nicholls, (2012) mayor biodiversidad, resiliencia y elementos para una sostenibilidad ecológica y social; y en la práctica según Migliorati, (2016), mayor producción de alimentos; concibiendo así la necesidad de un nuevo paradigma o forma justa de agricultura.

Desde un punto de vista teórico-metodológico, el paradigma de agricultura justa debe partir de los principios y conceptos de la ciencia agroecológica para el diseño y evaluación de sistemas de producción agropecuarios con enfoque de sostenibilidad. La agroecología como ciencia transdisciplinaria y participativa (Ruiz-Rosado, 2006), no es meramente un conjunto de recetas tecnológicas, sino que parte del empoderamiento de la familia campesina considerando su entorno ecológico, social y económico; muchas veces desventajoso por el predominante sistema de mercado. Esto hace a la agroecología una ciencia que se nutre de las experiencias campesinas (locales) exitosas que pueden ser traducidas en indicadores útiles para la evaluación y difusión de prácticas agroecológicas exitosas.

En el contexto de la agricultura nicaragüense, las prácticas agroecológicas han evolucionado producto de experiencias locales acumuladas por productores individuales y asociaciones; lo que ha generado un reconocimiento, del aporte de los productores agroecológicos a la producción nacional y más importante aún, a la conservación de los recursos naturales; que bajo un modelo de agricultura convencional y extensiva ha deteriorado la naturaleza a niveles críticos.
López, (2012) resaltó que la agroecología ofrece respuestas a la degradación ambiental, social y económica resultante de la prevaleciente agricultura moderna basada en la dependencia de agroquímicos, tecnología y energía fósil; es más, responde a la necesidad de incrementar los niveles de consumo de alimentos inocuos para la salud de los consumidores que a la larga afecta el nivel de vida y productividad de la población vulnerable de los países más empobrecidos.

La agroecología propone el desafío de asumir la complejidad de la naturaleza no como un recurso infinitamente explotable sino como un bien que hay que conservar y a la vez reproducir. La racionalidad de la familia campesina interpreta la complejidad de su entorno para diseñar sus sistemas de producción agroecológicos convirtiendo estas experiencias en conocimientos sistémáticos emergidos de una práctica exitosa de sistemas productivos de autosubsistencia, en conversión o plenamente agroecológicos.

La visión agroindustrial debe apuntar hacia mecanismos de agregación de valor, cuya determinante principal es la creación de cadenas de valor o mecanismos de comercialización con precios justos (Gráfico 1), y por tanto, distribución equitativa de los beneficios monetarios, que incentiven al productor a desarrollar procesos de transformación de la materia prima, así como la implementación de normas de certificación tanto de las prácticas productivas como de las reglas o alternativas de comercio; ambas alternativas llevarían a la agroindustria rural a convertirse en opción agroalimentaria, para el cumplimiento de los pilares de la seguridad alimentaria.

Este componente se fundamenta conceptualmente en mecanismos de control participativo y democrático de mercados alternativos, justos y circuitos cortos de comercialización que promueve la agroecología. En este sentido, los mercados alternativos bajo diferentes denominaciones tienen como metas principales: fortalecer el nivel de organización de los comités, redes o grupos de productores, obtener alimentos sanos, promover acercamiento e intercambio entre los productores y los consumidores, intercambiar conocimientos, elementos culturales e innovaciones; y organizar la finca en función de los espacios de negocio creados localmente desde la práctica de los actores (Gráfico 1).
Gráfico 1 Conceptualización agroecológica de Mercados Alternativos pasa Sistemas de Seguridad Alimentaria y Nutricional.

En la dinámica de instancias del estado y organizaciones de productores algunas de las actividades que se desarrollan son: tianguis, entrega de canastas comunitarias a consumidores, tiendas campesinas y ferias agroecológicas; y facilitación de transacciones con mayorista, estas actividades se enriquecen en los roles que juegan los diferentes actores.

En el enfoque de comercio justo promovido por la agroecología, el estado no solo se limita a intervenir en la regulación de precios y cantidades con diferentes mecanismos; sino que involucra a nuevos consumidores, incrementa las capacidades institucionales, y el crecimiento de la demanda organizada. Desde lo político, el desafío consiste en asegurar el reconocimiento de la propuesta, el apoyo a su masificación y cierta forma de institucionalización.
La investigación como base para la generación de conocimientos y, la innovación, para la transformación a modelos de agricultura sostenible se debe considerar según Álvarez-Salas et al., (2014) enfoques de investigación que se aproximen a la complejidad de los agroecosistemas como objetos de estudio, lo que demanda superar progresivamente el paradigma Cartesiano del análisis fragmentado de los problemas de la agricultura que necesitan abordaje sistémico, siempre con una lógica de carácter científico; para implementar el paradigma de Análisis Complejo para proponer soluciones pertinentes y sostenibles.

En la práctica Álvarez-Salas et al., (2014) destacan la participación activa de las comunidades en el proceso de investigación; mientras la innovación debe tener como fuente, el conocimiento local y el conocimiento tradicional para el diseño y manejo del agroecosistema.

Los recursos humanos tanto para investigación, como para transformación de los sistemas se generan a través del tiempo, en procesos de mejoramiento de capacidades locales formales e informales; mientras a corto plazo, el capital humano estaría en las prácticas tradicionales de miembros de las comunidades.

La construcción de modelos teóricos relacionados a sistemas productivos sostenibles, y sobre todo el análisis de estos presentan comúnmente una tendencia a integrar bajo el estudio de los procesos ecológicos que determinan su dinámica, la identificación de funcionalidad de los componentes y; por tanto, la complejidad como sistema, y su vez, el aporte a los tres pilares de la sostenibilidad. Al respecto, la simplificación de procesos ecológicos de los agroecosistemas, y su representación mediante un conjunto de variables ambientales, y/o agroambientales aporta al entendimiento de mecanismos básicos del funcionamiento, y evaluación de los diseños que los constituyen.

En el estudio de los diseños agroecológicos es de utilidad el uso de modelos dinámicos que faciliten una representación anticipada de la administración y uso de los componentes y recursos, así como la adición, sustracción o modificación de interacciones y relaciones (Candelaria-Martínez et al., 2011), que en la práctica determinan las estrategias de diseño, manejo y evaluación mediante la conceptualización de los procesos como variables y efectos medibles en los agroecosistemas.
3.2 Bases teóricas relativas al estudio del proceso de conversión hacia sistemas agroecológicos.

La connotación sobre conversión agroecológica propuesta por Altieri y Nicholls, (2007) sugiere un proceso de transición hacia sistemas eficientes en la utilización del recurso suelo y sus componentes, así como recursos locales. De la misma forma, es asumida como estadios intermedios entre agricultura convencional, orgánica y sistemas sostenibles; considerando estrategias como sustitución de insumos, diversificación, potenciación de interacciones y transformación del sistema, las cuales están asociadas a cada etapa del proceso.

De acuerdo con Gliessman et al., (2007) la conversión agroecológica es un proceso que se basa en la manipulación de la estructura del agroecosistema para incrementar la funcionalidad de sus componentes, a partir de cambios e incorporación de prácticas.

La conversión hacia una agricultura agroecológica establece fases de transición cuyas etapas y procesos tienen distintas particularidades ecológicas y técnicas, y que en lo operativo es desarrollada a través del establecimiento y manejo de diseños agroecológicos, cuya definición los presenta como sistemas de diferentes escalas (organopónicos, huertos intensivos, patios, parcelas y fincas típicas, hasta los límites de cuenca y paisaje) que se originan de actividades de planificación y manejo espacial, estructural y temporal de la vegetación, cultivada o no; siendo los elementos esenciales en el manejo, los tipos de biodiversidad (Noguera-Talavera et al., 2017a).

La transición como parte del proceso de conversión agroecológica parte de la existencia de un agroecosistema establecido y manejado a través de prácticas de agricultura convencional, altamente demandante de insumos para subsidiar los procesos disminuidos o perdidos por la simplificación del sistema. Según Nicholls et al., (2016) los productores inician con la transformación en las características del suelo (denominada activación biológica del suelo) como recurso estratégico para soportar la diversificación del sistema, y en consecuencia el incremento en la biodiversidad y productividad.

La conceptualización de productividad asociada a los sistemas productivos con base agroecológica es analizada por Martínez, (2002) desde dos dimensiones, la relativa a la manera como se usa el agroecosistema en espacio y tiempo (elementos bases para el diseño
y manejo de la estructura), y en términos de la fuerza laboral. La primera dimensión tiene su expresión en procesos como diversificación, manejo de la biodiversidad y buen aprovechamiento de fuentes naturales de energía; mientras la segunda radica en producir a partir de una alta eficiencia de la mano de obra familiar y/o comunal, reduciendo así el riesgo de comerciar con la fuerza laboral y; el despojo o pérdida de la tierra y, por tanto, la desaparición de la ruralidad.

En la misma línea Vilaboa et al., (2006) visionaron la productividad como la eficiencia biológica de un sistema de producción con expresión en la sostenibilidad del sistema.

Bajo diferentes concepciones, la productividad presenta una estrecha relación con la biodiversidad, ya que, según Héctor et al., (2001), esta última tiene influencia en los procesos que determinan el funcionamiento del ecosistema. En esta relación entre productividad y biodiversidad abordada por Gaba et al., (2014), la agroecología se ve fortalecida en el enfoque de control biológico mediante conservación de hábitat propicios para la presencia de enemigos naturales de plagas, que generan bajas en la productividad económica de cultivos de interés.

La manipulación y regulación de interacciones bióticas y el funcionamiento del agroecosistema, para incrementar la sostenibilidad de la producción agrícola mientras se mantiene la diversidad de servicios provistos por estos ecosistemas, es uno de los grandes retos de la agricultura de este siglo (Gaba et al., 2014).

Sarandón (2002), aportó a la hipótesis que establece una influencia directa entre productividad y biodiversidad, siendo esta última, además de un indicador estructural, indicador de la sostenibilidad de los agroecosistemas. Este autor, definió la capacidad productiva de un agroecosistema, como una condición ecológica relacionada al manejo, que de forma explícita está determinada por el ritmo de uso y reposición de los recursos renovables asociados al proceso productivo, estableciendo algunos indicadores de proceso como: reducción de la erosión del suelo, retención de la materia orgánica, mantenimiento del flujo de nutrientes, y mantenimiento de la estructura a través del uso de la biodiversidad.
Según Gaba et al., (2014), en modelos de agricultura sostenible, la productividad puede incrementar mediante la intensificación ecológica de los sistemas productivos, siendo un factor clave el manejo de las interacciones biológicas de los componentes del sistema para reducir la dependencia de insumos externos. Siendo una opción práctica, la implementación de prácticas que aporten a la ocurrencia de interacciones benéficas y potencialmente manejables.

Fincas con sistemas tradicionales proveen modelos que promueven la biodiversidad, prosperan sin agroquímicos, y sostienen sus rendimientos por años (Altieri et al., 2017).

Algunas de las prácticas de manejo implementadas como parte del modelo de producción agroecológica propuesto para Moringa, son descritas en la gráfica siguiente:

<table>
<thead>
<tr>
<th>Práctica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policultivo</td>
<td>Promueve una ocupación completa del suelo, diversificación de las salidas del sistema, facilitación en el uso de recursos, y control de plagas.</td>
</tr>
<tr>
<td>Labranza mínima</td>
<td>Estabilidad de la estructura del suelo, microhabitats propicios para la macrofauna edáfica</td>
</tr>
<tr>
<td>Rotación de cultivos</td>
<td>Manejo de las interacciones de competencia entre componentes del sistema, promoción de procesos de facilitación de condiciones y recursos en el sistema.</td>
</tr>
<tr>
<td>Fertilización orgánica</td>
<td>Mejoramiento en las propiedades físicas, químicas y biológicas del suelo, promoviendo así un suelo saludable y productivo, flujo de energía</td>
</tr>
<tr>
<td>Corredores de biodiversidad</td>
<td>Conservación e incremento de biodiversidad funcional (proporción de entomofauna benéfica), servicio de polinización, entre otros.</td>
</tr>
</tbody>
</table>

Gráfico 2. Relación intensificación mediante prácticas y funcionalidad: Base para la productividad y sostenibilidad del agroecosistema.

En el modelo propuesto para la conversión agroecológica del sistema productivo de Moringa, las prácticas relativas al manejo del suelo y diversificación del sistema (Gráfico 2) implicaron la reducción y/o sustitución de insumos inorgánicos por orgánicos, y/o la incorporación de biomasa de especies leguminosas cuya contribución al ciclaje y disponibilidad de nutrientes para las plantas ha sido frecuentemente estudiado y comprobado. De acuerdo con Nicholls et al., (2016), los resultados de estrategias de manejo del suelo
(propiedades químicas y biológicas) son identificables durante los primeros 3 años de la conversión.

El manejo de las interacciones bióticas se constituyó en un eje transversal para el proceso de conversión agroecológica ya que es una estrategia que conlleva al logro de la integración y funcionalidad de los componentes del agroecosistema; siendo así, ésta fase asegura la efectividad de las prácticas y eficiencia de los diseños agroecológicos. Por tanto, es bajo la perspectiva de una alta funcionalidad en el sistema que se puede alcanzar sostenibilidad para el logro de objetivos de desarrollo.

En la práctica una estrategia para el manejo de las interacciones consistió en identificar la compatibilidad entre los componentes del sistema, ya que facilitó planificar el momento preciso en que cada componente está bajo una condición de funcionamiento ideal para sí mismo y, por tanto, en la posibilidad de facilitar interacciones positivas con los otros componentes, para en su conjunto alcanzar un alto nivel de funcionalidad.

El rediseño del sistema como fase de transformación de la estructura para pasar de un sistema simplificado a uno con estructura compleja, es comúnmente sustentado en el incremento de la agro biodiversidad, cuyo manejo está condicionado por el interés y posibilidades económicas del productor, en donde resalta la cultura productiva (conocimiento de las ventajas y limitantes del entorno social y de mercado), su visión de conservación de la naturaleza y el entendimiento de procesos ecológicos que promueven productividad y sostenibilidad.

Al respecto de la visión de la valoración de la sostenibilidad de los modelos de producción sostenible, Flores y Sarandón, (2014), exponen el conflicto en la conceptualización de dicho indicador, asumiendo que la valoración basada en la racionalidad económica es totalmente opuesta a la de carácter ecológico; por lo que comúnmente los enfoques del análisis condicionan las decisiones sobre la sostenibilidad de los diseños agroecológicos. Por lo que la interrogante ¿Cuándo se considera que un diseño agroecológico es o tiende a ser sostenible?, es común entre decidores y evaluadores para la declaración de fincas o faros agroecológicos.
El punto convergente entre racionalidad económica y ecológica en el análisis de la sostenibilidad según Flores y Sarandón, (2014) puede estar en la consideración de los elementos naturales asociados a la agricultura, no por separado sino bajo el enfoque de análisis complejo o capital natural, siendo ejemplos: suelo, biodiversidad, agua, entre otros. Es como parte de esta corriente denominada “sustentabilidad fuerte” que se resaltan los procesos o funciones ecológicas como medios para el sostenimiento y conservación de los recursos naturales en el marco de la agricultura.

Sarandón (2002), puso en contexto la visión de sostenibilidad, cuya funcionalidad está relacionada a la variable tiempo, por lo que puede ser planificada para diferentes plazos, componentes y procesos de un sistema; destacando el carácter complejo y, por tanto, frecuentemente ambiguo en cuanto a la definición del tiempo necesario para la evaluación de la sustentabilidad a nivel de sistema. Desde la perspectiva del tiempo el autor puntualiza en la necesidad de periodo de evaluación mayor a 2 años para visualizar tendencias lógicas; complementando, que además del tiempo los métodos e indicadores de la evaluación juegan un rol determinante.

En cuanto al factor tiempo muchos interesados y usuarios siguen haciéndose la pregunta ¿Cuánto dura el proceso de conversión agroecológica? Encontrándose respuestas y experiencias poco generalizables, a pesar de la calidad de muchos trabajos; producto esto, de la diversidad de contextos agroambientales, económicos y socioculturales; sin embargo, desde una perspectiva de aprendizaje personal la duración dependerá del tipo de conversión que asuma cada productor, que al final implica o la determina: el respaldo de saberes, sistematización y retroalimentación a la experiencia campesina (lo que en agricultura convencional se denomina extensión), y posibilidades económicas.

La conversión puede ser de tipo longitudinal, lo que implica un periodo de transformación extensa en tiempo (8 a 20 años) en donde en las fases de la transición se aplica el principio de la transformación continua propuesto por Rosset (2014), y en cuyo caso de acuerdo con Nicholls et al., (2016) lo más difícil es el manejo de interacciones, hasta lograr la complejidad y funcionalidad planificada.
Por otro lado, un tipo de conversión vertical apunta hacia el logro de un diseño agroecológico complejo y funcional en menos tiempo (3 a 7 años), siendo factores determinantes la experiencia y capital de los productores. Mientras desde las instancias nacionales de agricultura, un proceso de extensión coherente con las dinámicas agroecológicas incrementaría la efectividad y sostenibilidad de los sistemas productivos.

Siqueira y Souza (2013) argumentaron la necesidad de realizar la conversión hacia sistemas agroecológicos de manera paulatina; y por tanto a favor de una transición lenta y extensa en el tiempo, para garantizar la adopción progresiva de las prácticas agroecológicas; y más que eso, una correcta aplicación de los principios agroecológicos (Nicholls et al., 2016), coincidiendo en que el límite de cada etapa dependerá del contexto socioeconómico y la visión de sostenibilidad.

Un indicador de ruta correcta en la transición, es el progresivo incremento en los valores de diversidad funcional como parte de la evolución del sistema en el proceso de conversión agroecológica; sin embargo, Alonso et al., (2005), reportaron el fenómeno contrario, asumiendo así la posibilidad de diferencias entre los valores de la diversidad después de algunos años de iniciadas las prácticas basadas en insumos orgánicos, rotación de cultivos e incorporación de leguminosas, lo que es analizado como un proceso de estabilización del agroecosistema en cuanto a la biodiversidad planificada.

Una tendencia a menor diversidad en conversión agroecológica, en comparación a los trabajos de Brown et al., (2001) y Ayuke et al., (2009) fue explicada por la edad del sistema, asumiendo lo propuesto por Nicholls et al., (2016), quienes han planteado que la productividad basada en la diversidad funcional tiende a ser baja los primeros 3 a 5 años en esquemas de diversificación, en comparación a manejo convencional, para luego incrementar por efecto de diseños eficientes en cuanto a relaciones de facilitación entre cultivos, aportando no solo al incremento de la diversidad; sino a la funcionalidad y estabilidad de esta en pro del sistema.
El **Grafico 3**, resume el modelo conceptualizado en este trabajo, el que representa parte de un enfoque innovador de conversión agroecológica de corte vertical ya que plantea una primera etapa en alguna medida más compleja, ya que no solamente se enmarcó en las prácticas de sustitución de insumos inorgánicos por orgánicos, planteada por Gliessman *et al.*, (2007), y Altieri y Nicholls, (2007) en sus conceptualizaciones de la transición; sino que con el propósito de agilizar la conversión se trabajó el rediseño del sistema (originalmente parte de la segunda fase) durante la primera fase del proceso.

El cambio propuesto fue asumido como una estrategia para lograr una eficiente producción de materia orgánica, con la inclusión de leguminosas fijadoras de nitrógeno y útiles como abonos verdes, para sustitución de insumos para fertilización y control de arvenses; y acelerar el proceso de activación biológica del suelo.

Gráfico 3. Fases de la conversión agroecológica del sistema de producción de *M. oleifera*
El incremento de la complejidad del sistema a través de la implementación del rediseño (cambios/manipulación de la estructura espacial y temporal) en la primera fase, contribuyó adicionalmente a preparar las condiciones de hábitat y conocimiento de la compatibilidad entre la biodiversidad productiva, y dinámica de la biodiversidad asociada, para el manejo de las interacciones en la segunda fase; precepto que de acuerdo con Nicholls et al., (2016) representa la mayor dificultad en el cumplimiento de las etapas de la transición como parte de la conversión agroecológica.

3.3 El contexto del impulso de la producción de Moringa y su papel en sistemas de producción con enfoque agroecológico.

Nicaragua cuenta desde 2012 con una Estrategia Nacional para el Fomento a la Producción, Consumo y Comercialización del árbol de marango (*Moringa oleifera*), mecanismo que ha servido como plataforma de organización e integración de instancias gubernamentales, productores y otros actores, en la visión de promover actividades de investigación de carácter ecológica-productiva, usos asociados a consumo humano y consumo animal; y procesos de transformación industrial, aspectos normativos de la producción y transformación (NTON), iniciativas de negocios, soberanía alimentaria y nutricional.

Magaña-Benítez, (2012) externalizó un contexto con alternativas mediante las cuales se soporta el eje de desarrollo rural que puede adquirir el sistema producto de la cadena de valor de *Moringa oleifera*, al aducir que sus múltiples aprovechamientos como especie comestible e industrial promovería diversidad de opciones para generar ingresos al transformar la materia prima en alimentos industrializados, generando en la transformación, un valor agregado para una rentable comercialización. El autor resaltó, la visión de desarrollo a escala regional con base en la diversidad de sistemas y productos en que puede ser cultivada y aprovechada la especie.

Otro enfoque de una estrategia de desarrollo rural es el de soberanía y seguridad alimentaria y mitigación al efecto de cambio climático por la diversidad de sistemas en que puede ser incluida la especie (cercas vivas, árboles dispersos en cultivos y callejones, bancos de proteínas, bancos forrajeros, viveros, plantación semilleras, entre otros).
La existencia de un mercado potencial de productos de *M. oleifera* obtenidos bajo estándares de agricultura sostenible (Basado en J.R. Castillo & Asociados, 2015): Diversas fuentes reportan un creciente mercado mundial disponible para la comercialización de hojas deshidratadas, extracto foliar, extracto de semilla, semilla, aceite de semilla, aceite de flor, entre otros, y cuya norma promueve la innocuidad de dichos productos al provenir de modelos de agricultura sostenible, lo cual representa una oportunidad para productores agroecológicos de zona seca.

Bajo un modelo de agricultura convencional, la producción de *M. oleifera* tiene un alto potencial en la generación de externalidades negativas ya que en la fase de establecimiento inicial (3 a 4 meses) el sistema es altamente demandante de fertilización, control fitosanitario (herbicidas, pesticidas, ect), riego, y mecanización.

En el manejo convencional, existe una alta demanda de nitrógeno para la producción de forraje de *M. oleifera*: El trabajo realizado por Mendieta-Araica, (2011) determinó que con una propuesta de manejo convencional intensivo (planificado para alta producción de biomasa con alta frecuencia de corte) conlleva una alta demanda de nitrógeno (desde 223 kg N ha\(^{-1}\) en el primer año de producción, hasta 447 kg N ha\(^{-1}\) dos años después de establecido el sistema), y por tanto externalidades negativas para el medio ambiente y la sostenibilidad del sistema.

González-González y Crespo-López, (2016) reportaron que fertilización mineral (0.6 ton/ha\(^{-1}\) de fertilizante formula 54 kg N, 54 kg P y 72 kg K + 130 kg/ha\(^{-1}\) de Urea), para una dosis de N total de 300 kg/ha\(^{-1}\) /año experimentó menores rendimientos de materia seca, en comparación a una fertilización orgánico-mineral (0.3 ton/ha\(^{-1}\) de fertilizante formula 27 kg N, 27 kg P y 36 kg K + 65 kg/ha\(^{-1}\) de Urea + 6 ton/ha\(^{-1}\) de estiércol vacuno) para una dosis de N total de 300 kg/ha\(^{-1}\)/año; y fertilización orgánica (12 ton/ha\(^{-1}\) de estiércol vacuno) para una dosis de N total de 180 kg/ha\(^{-1}\)/año; demostrando de esta manera la viabilidad de implementación de fertilización más eficiente productiva y ambientalmente, según las características del suelo.
3.3.1 Características y usos que justifican la selección de *Moringa oleifera* como componente productivo en modelos de agricultura ecológica.

Las características morfológicas que hacen de *M. oleifera* una especie útil en diseños agroecológicos son: corona pequeña, irregular y abierta, pocas ramas bajas, raíz tuberosa, y ángulo de inserción de ramas menor a 90 grados (Noguera-Talavera *et al.*, 2017b).

Otras características son identificadas por Casanova-Lugo *et al.*, (2018), entre las que sobresalen: alta producción de biomasa fresca (25.8 ton/ha\(^{-1}\)/año\(^{-1}\)), las hojas poseen una rápida tasa de descomposición (85.3%), y liberación de N al suelo (89%) lo que se considera una propiedad de gran interés para actividades de fertilización orgánica en alternativas de producción sostenible, ya que promueve la activación biológica del suelo.

La factibilidad de esta especie en sistemas productivos sostenibles es planteada desde el carácter multifuncional que resulta de la utilidad de todas las partes de la planta, siendo comestible tanto para humanos como para animales, y usos industriales; surgiendo así, una gran cantidad de estudios tanto relacionados al manejo agronómico, como al aprovechamiento poscosecha (físicos, fisiológicos y bioquímicos), (Magaña-Benítez, 2012).

El uso potencial de *M. oleifera* en nutrición humana y nutrición animal tanto de ganado mayor, menor, y otras especies en explotaciones agropecuarias, se basa en la composición nutricional de hojas frescas que reportaron 19 aminoácidos (Moyo *et al.*, 2011). Foild *et al.*, (2001) en material procedente de Nicaragua, reportó: 25.1% de proteína cruda, macro elementos como: Fosforo (1.16), Calcio (17.5), Sodio (1.16) y Potasio (19.1); además de micro elementos como: Hierro (582), Zinc (47.1) y Manganeso (13.5), todos los valores en g/kg\(^{-1}\) de materia seca. Ali, (2014), reportó porcentajes de humedad, carbohidratos y grasas de 5.9, 38.6 y 17.1 respectivamente, mientras metabolitos secundarios como saponinas se encontraron en rangos (4.7 a 5 g/kg\(^{-1}\) de materia seca) no perjudiciales para la salud (Yubero, 2013; Ali, 2014).

La especie *M. oleifera* es generalmente utilizada en un número de países desarrollados como un vegetal, producto nutracéutico, planta medicinal y aceite vegetal (Ali, 2014); mientras en los trópicos, la lista de usos es amplia, siendo el énfasis forraje (Animashaun y Toy, 2013; Yubero, 2013), elaboración de extractos (harina) para alimentación e industria farmacéutica.
como antioxidantes para reducción de glucosa en la sangre (Giridhari et al., 2011), tratamiento de aguas industriales y domésticas (Kwaambwa et al., 2012); biogás (hojas), fertilizante foliar (jugo extraído de las hojas), abono verde (hojas), miel (néctar de flores), biopesticida (incorporación de hojas al suelo para prevenir mal del talluelo) y aceite (semilla, flor) (Leonard, 2018).
IV. MATERIALES Y MÉTODOS
4.1 Localización del área experimental.

Los ensayos fueron establecidos en la unidad productiva finca Santa Rosa, cuya ubicación geográfica es 12°09’30.65”N, 86°10’06.32”W (Mendieta-Araica, 2011), y a una altitud de 50 m.s.n.m perteneciente a la Universidad Nacional Agraria.

4.1.1 Características biofísicas del área experimental.

Climáticamente, el área pertenece a una zona de vida de bosque seco tropical, con precipitación y temperatura media anual de 1099 mm y 27°C respectivamente, y humedad relativa de 74%; predominando dos estaciones definidas por una época seca que va desde noviembre a abril, y una época lluviosa de mayo a octubre (Mendieta-Araica, 2011).

El Gráfico 4, muestra la distribución mensual de la precipitación durante los periodos en que se establecieron y evaluaron los ensayos, a excepción del 2015, fecha en que se llevó a cabo el tercer ensayo. Al respecto, es de importancia mencionar que los dos primeros ensayos fueron establecidos en 2013 y 2014, respectivamente; coincidiendo con el periodo de ocurrencia del fenómeno en niño en Nicaragua.
Desde el punto de vista del momento de establecimiento y manejo de los ensayos, se procuró que estos no compitieran con la cosecha de primera y postrera, y que desde el punto de vista de tolerancia utilizaran solo las últimas lluvias y la humedad almacenada en el suelo al final de la época lluviosa.

El suelo de la unidad productiva Santa Rosa, pertenece a la serie Sabana Grande. El suelo pertenece al orden taxonómico Andosol (Mendieta-Araica, 2011). Son suelos que se desarrollan en eyeccciones o vidrios volcánicos, tienen un alto potencial para la producción agrícola, con usos frecuentes para arroz, caña de azúcar, tubérculos, trigo, entre otros. La fuerte fijación de fosfato de los Andosoles (bajo nivel de fosfato), requiere fertilización fosfatada, como medida correctiva. Los Andosoles son fáciles de cultivar y tienen buenas propiedades de enraizamiento y almacenamiento de agua (IUSS-WRB, 2007).

Mediante análisis realizado en el laboratorio de suelos y agua (LABSA) de la Universidad Nacional Agraria, se determinó clases texturales que van de Franco Arenoso, a Franco Arcilloso Arenoso (Cuadro 1); y buen drenaje; condiciones que se constituyen en óptimas para el establecimiento de *M. oleifera*.

Cuadro 1. Clasificación textural del suelo en áreas experimentales con *M. oleifera* en la finca Santa Rosa, Universidad Nacional Agraria.

<table>
<thead>
<tr>
<th>Sistemas de manejo</th>
<th>Partículas</th>
<th>Clase textural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arcilla</td>
<td>Limo</td>
</tr>
<tr>
<td>Lote 1: Manejo convencional</td>
<td>18.4</td>
<td>22.0</td>
</tr>
<tr>
<td>Lote 3: Manejo convencional</td>
<td>16.4</td>
<td>24.0</td>
</tr>
<tr>
<td>Parcela 1: Manejo agroecológico</td>
<td>21.6</td>
<td>24.0</td>
</tr>
<tr>
<td>Parcela 2: Manejo agroecológico</td>
<td>21.6</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Método Bouyoucos: Muestra de suelo mezclada con agua, y cálculo de la densidad de la suspensión con densímetro, en A.O.A.C, (1980).
4.2 Actividades de investigación

La metodología implementada consistió en la realización de monitoreo periódicos, repetidos en el tiempo (2013-2016) según lo propuesto por Sarandón, (2002) en su propuesta para estudios de sostenibilidad; mientras en este estudio el propósito fue determinar la dinámica de los componentes dentro del agrosistema modelo, a partir de las medidas de manejo cultural; clasificándose de esta manera en un tipo de investigación longitudinal, según Arnau y Bono, (2008); estos autores resaltaron que este tipo de investigación al monitorear por periodos prolongados (hasta décadas) un fenómeno de interés, presenta diversidad de aplicaciones, cuyo origen se asentó en disciplinas psicológicas y sociológicas, para luego ser de utilidad en otras ramas de las ciencias naturales.

Esta metodología utiliza la observación y mediciones repetidas como métodos de referencia; mientras los datos que se recolectan pueden ser de tipo cualitativo y cuantitativo. Es así, que desde la perspectiva del proceso de conversión agroecológica y su temporalidad hasta llegar a su validación, este tipo de investigación denota significativa utilidad.

4.3 Diseño del sistema agroecológico: Caracterización y determinación de interacciones entre componentes.

El diseño del sistema agroecológico propuesto como modelo productivo de *M. oleifera* fue planeado considerando los principios agroecológicos del proceso de conversión agroecológica abordados en la sección de marco teórico, reconociéndose algunos de ellos como: 1) reducción de la dependencia de insumos externos, a través de la sustitución de prácticas y utilización de recursos locales, 2) inclusión de diferentes tipos de biodiversidad, 3) aumento de la productividad del sistema agroecológico, a partir de incremento en la eficiencia de los procesos ecológicos asociados a la diversidad biológica del suelo.

De manera general, la configuración del paisaje en que fue establecido el diseño agroecológico estuvo dominado por un uso productivo-ganadero del suelo, debido al perfil de formación de la Facultad de Ciencias Animales a la que pertenece la finca Santa Rosa.
Las actividades productivas durante 2013 hasta 2016 en las 155 mz de superficie cultivables correspondieron a producción de pastos (*Cynodon nlemfuensis, CT-15*), caña de azúcar (*Saccharum officinarum* (L.), granos (*Zea mays, Sorghum bicolor y Phaseolus vulgaris*), áreas experimentales de cultivo de leguminosas forrajeras, áreas de vegetación natural arbustiva y áreas de producción de moringa.

La distribución de las áreas para producción de semilla de *M. oleifera*, correspondió a lotes con diferentes superficies (desde 0.7 hasta 3 mz) dispersos entre los diferentes usos de suelo en la finca Santa Rosa; por lo que el factor adyacencia tuvo influencia sobre la dinámica (presencia/ausencia, fluctuación poblacional, funcionalidad) de la biodiversidad en las áreas de producción de *M. oleifera*.

Gráfico 5. Estructura-distribución de la biodiversidad asociada a los sistemas de producción de *M. oleifera* en la Finca Santa Rosa, Universidad Nacional Agraria

La estructura de las áreas de producción de *M. oleifera* estuvo conformada por lotes compactos con el cultivo de moringa, linderos o perímetros delimitados por cauces naturales, cercas vivas, cercas muertas y vegetación natural arbustiva (*Anexo 2*). De manera complementaria, las áreas adyacentes estuvieron constituídas por campos de granos básicos.
y otros lotes de plantación de moringa (figura 3). La estructura y distribución de la biodiversidad del área en conversión agroecológica es mostrada en el Gráfico 5.

Desde los fundamentos de ecología, la complejidad de la estructura de un sistema es un indicador de la funcionalidad del mismo; bajo esta visión se pone en contexto que como parte del diseño del sistema agroecológico objeto de estudio, la estructura espacial correspondió a un multiestrato en donde *M. oleifera* ocupó el estrato superior en vista de la vocación para producción de semilla del sistema.

Los subsiguientes estratos estuvieron constituidos por la arbustiva *Cajanus cajan* (gandul) y la gramínea *Zea mays* (maíz var. NB6), esta última en el tercer año del experimento (Gráfico 5). El tercer estrato (el más bajo) fue ocupado por leguminosas herbáceas de menor porte como fueron *Cannavalia ensiformis*, *Cannavalia brasiliensis* y frijol caupi o alasin (*Vigna unguiculata*). El arreglo espacial obedeció a la necesidad de controlar arvenses, siendo las especies del género *Cannavalia* las que cumplieron dicha función, por su morfología.

4.4 Tipos de biodiversidad constituyentes de modelo productivo de *M. oleifera*.

4.4.1 Biodiversidad productiva.

Determinada por el cultivo principal *M. oleifera*, y complementarios como canavalías *Cannavalia ensiformis*, *Cannavalia brasiliensis*, gandul (*Cajanus cajan*), frijol caupi o alasin (*Vigna unguiculata*), y maíz (*Zea mays*) que fueron asociados con *M. oleifera* en dinámica de rotación anual (*Cannavalia, Caupi, maíz*) durante la duración de la investigación.

La dinámica de rotación, como parte de la estructura temporal del sistema estuvo en dependencia de la compatibilidad entre los elementos de la estructura espacial; lo cual determinó la estrategia de rediseño para el logro de la funcionalidad de los componentes espacial y temporal.

Por ejemplo: Al detectar interacción negativa entre *C. brasiliensis* Moringa, expresada en incompatibilidad mecánica, que redujo el crecimiento de Moringa; la rotación y rediseño cambio a la asociación con la leguminosa *C. cajan*, por su crecimiento erecto, y *V.*
L. unguiculata, también por desarrollar menor área foliar y por tanto, menos potencial para crear efecto negativo en el asocio con Moringa.

La composición de especies en el diseño fue forzada hacia una alta presión de selección de las especies de la familia Leguminosae con el propósito de mantener una activa fijación de nitrógeno (N), y contenido de biomasa para retención de la humedad, y aporte al contenido de materia orgánica, para así reducir la dependencia de aplicación de fertilizantes sintéticos con contenido de Nitrógeno.

El área experimental del diseño de conversión agroecológica fue dividida en parcelas de 15m x 30m (0.045 ha), las cuatro parcelas en que se realizó la evaluación del diseño fueron seleccionadas de manera aleatoria.

La plantación de *M. oleifera* fue establecida mediante un diseño lineal con distancia de siembra de 3 metros entre plantas y entre hileras, como distancia mínima en diseños con enfoque de sistema agroforestal desarrollados por Edward *et al.*, (2012) y Valdés *et al.*, (2014) (Grafico 5).

El complemento del componente productivo, que fue asociado con *M. oleífera* fue introducido entre líneas de plantación, con distancia de siembra de 50 cm entre plantas y entre hileras; siendo el criterio de selección de este distanciamiento, el hábito de crecimiento de las especies y, por tanto, la cobertura (sombreo) que genera al suelo para un efecto de control de arvenses.

4.4.2 Biodiversidad asociada.

Con base en la visión de complejidad de los agroecosistemas, se reconoce la importancia de la vegetación natural alrededor de los campos de cultivo, por su rol de reservorio de enemigos naturales de plagas. Estos hábitats pueden ser importantes como sitios alternos para la liberación de algunos enemigos naturales, o como áreas con recursos alimenticios, tales como polen o néctar para parásitos y depredadores.

Muchos estudios han documentado el movimiento de enemigos naturales desde márgenes hacia dentro de los cultivos, demostrando un mayor nivel de control biológico en hileras de cultivo adyacentes, hasta márgenes de vegetación natural en hileras en el centro del cultivo (Blanco y Leyva, 2013).
La biodiversidad asociada fue visualizada y evaluada con base en dos de sus componentes de interés desde el punto de vista de interacciones y funcionalidad:

La macrofauna como componente biológico del suelo en cada sistema de manejo.

Las propiedades biológicas del suelo fueron determinadas a partir del método empleado por Zerbino (2010) que se basó en un monitoreo de la actividad de la macro fauna del suelo en diferentes épocas (época seca, época lluviosa) en los dos sistemas de manejo de cultivo.

Para este caso el monitoreo se realizó mediante la obtención de 12 muestras o monolitos por sistema de manejo. Las unidades de muestreo fueron distribuidas de manera diagonal en parcelas rectangulares de 30 m x 15 m, a una distancia de 15 metros entre monolitos.

La profundidad del muestreo correspondió desde la parte superficial del suelo (hojarasca), hasta 30 centímetros, realizando colecta de organismos y de suelo cada 10 centímetros (figura 4).

Gráfico 6. Aspectos metodológicos del muestreo de macrofauna en sistemas productivos de M. oleifera

La colecta se enfocó en el registro de individuos mayores a 2mm de longitud como Isópodos (chochinillas), quilópodos (ciempies), diplópodos (mil pies), moluscos (caracoles), insectos (hormigas, larvas de insectos, escarabajos, termitas, entre otras) y oligoquetas (lombrices de tierra) (Grafico 6).
Los especímenes colectados fueron depositados en viales con alcohol al 70% y luego identificados a nivel de clase y familia, mediante el uso de claves desarrolladas por Roldan, (1988); Castner, (2000); y Marshall, (2008) las que toman en cuenta características morfológicas (en adultos, antenas, patas y aparato bucal; mientras en inmaduros se consideró número de patas, segmentos, antenas) de cada espécimen, en el laboratorio de Biología de la Facultad de Recursos Naturales y del Ambiente.

La macrofauna fue clasificada en los siguientes gremios ecológicos: detritívoros, herbívoros, ingenieros del suelo y depredadores según los grupos funcionales propuestos por Cabrera et al., (2011). Los resultados se basan en la densidad (individuos por m²) de cada taxón, y grupo funcional identificado; y diversidad por sistema de manejo y profundidad de muestreo; mientras la diversidad, y composición a nivel de familia fue analizada como indicador relacionado a la salud del suelo según Rendón et al., (2011) y, la interacción con el cultivo moringa.

La estadística no paramétrica (Prueba de Kruskal-Wallis) fue empleada para determinar diferencias en la variación de la densidad por taxón, grupo funcional por sistema de manejo. Se determinó el índice de dominancia de la comunidad (D) mediante el método propuesto por Turner y Garner, (1991) con comparaciones de “t” student en el programa PAST versión 1.29 (Hammer y Harper, 2004).

Se realizó un análisis de diversidad basado en la riqueza de familias, a través del método de conglomerados, para determinar la probabilidad de similitud de familias por sistema de manejo y el índice de Jaccard. Este índice expresa el grado en que dos o más muestras son semejantes por las especies, géneros o familias presentes en ellas, y se utilizó para este caso el nivel de familia. Los resultados del método permiten comprobar similitudes o diferencias en las condiciones y recursos de los hábitats, con base en los taxones que se comparten.

Análisis de componentes principales (ACP), que es una técnica multivariada basada en dispersión, fue realizado para determinar la asociación entre la diversidad y densidad de la macrofauna con las propiedades físico-química del suelo.
La precisión de esta técnica, fue medida a través de un porcentaje de confiabilidad cuya expresión numérica fue la variabilidad acumulada en los ejes de un plano cartesiano; por lo que se asumió que entre mayor fuera el valor de la variabilidad acumulada, mayor sería la presentatividad de los elementos que se desean asociar.

Complementariamente, la técnica asume que las variables independientes son vectores con magnitud y dirección, siendo este último parámetro el considerado para determinar la asociatividad entre éstas; mientras la distancia/dispersión de los valores de las variables dependientes, determinó la asociatividad con las variables independientes.

La diversidad de artrópodos en cada sistema de manejo.

La metodología utilizada en este trabajo se basó en el proceso de colecta desarrollado por (Jiménez-Martínez, et al., 2016) quienes utilizaron trampas pitfall y trampas aéreas, y la observación directa para estudios de diversidad de insectos y diagnóstico de la salud de agroecosistemas.

Según los autores, el número de unidades para la colecta es determinado por el objetivo del trabajo, elemento que además permitió definir el tiempo de muestreo o permanencia de las trampas en campo.

Las actividades de captura de los insectos se llevaron a cabo en tres momentos correspondientes al establecimiento y manejo de los ensayos, los que se dieron desde el mes de Noviembre de 2013 a Febrero de 2014, Octubre 2014 a Enero 2015; y Octubre 2015 a Enero 2016.

Para realizar el muestreo de artrópodos en el campo se establecieron 8 parcelas en total (4 parcela por cada sistema de manejo). Las dimensiones de las parcelas fue 15m x 30m.

Una vez delimitadas las parcelas, se dio la selección de dos puntos de muestreo por parcela. Los puntos de muestreo dentro de las parcelas (consistentes en arboles) se eligieron de manera aleatoria a partir de una lista de árboles que se muestrearon anualmente para determinar su crecimiento; y próximo a estos se establecieron las trampas pitfall.
La metodología utilizada tanto en la fase de colecta como de montaje e identificación de las muestras durante el periodo de estudio estuvo basada en la metodología propuesta por Medina, (1977), siendo realizada la identificación en el Laboratorio de Entomología de la Facultad de Agronomía.

La determinación de la diversidad de artrópodos asociada a los sistemas de manejo, se realizó mediante el cálculo del índice de diversidad de Shannon-Wiener el cual, expresa la equitatividad en la distribución o número de individuos que representa a cada especie, lo que fue entendido como la uniformidad de los valores de importancia a través de todas las especies de la muestra. Mide el grado promedio de incertidumbre en predecir a que especie pertenecerá un individuo escogido al azar de una colección (Moreno, 2001).

Asume que los individuos son seleccionados al azar y que todas las especies están representadas en la muestra.

La identificación de la funcionalidad de las especies dentro de los sistemas se llevó a cabo a través de una revisión bibliográfica de Saunders et al., (1998) y Jiménez y Sandino, (2009).

El procedimiento consistió en identificar el rol a partir de los patrones alimenticios de cada especie para luego sugerir en el potencial daño que estas representarían para el cultivo o cultivos dentro de los sistemas de manejo.

4.4.3 Biodiversidad acompañante.

Se registró a partir de un censo al 100% de los árboles en cercas vivas (árboles en linderos), según metodología propuesta para arboles fuera del bosque en Dettlefsen y Somarriba (2012) y arbustos dentro del sistema, tratando de documentar la relación entre este tipo de biodiversidad y los procesos ecológicos en el sistema.

La biota acompañante en el sistema de conversión agroecológica estuvo compuesta por cercas vivas con especies arbóreas como *Eucalyptus camaldulensis* (Dehnh.), *Azadirachta indica* (A. Juss), *Cordia dentata* (Poir.), *Pithecelobium dulce* (Roxb.) Benth., *Albizia saman* (Jacq.) Muell.), y *Stemmadenia obovata* (Hook. & Arn.) K. Shum.). Por el contrario, en el Sistema de manejo convencional, la biota acompañante fue menos diversa; estando
compuesta por cercas vivas con especies arbóreas como Neem *Azadirachta indica* (A. Juss), *Spondias sp.*, y *Albizia saman* (Jacq.) Muell.).

4.5 Evaluación de las propiedades del suelo y los cambios como influencia de las prácticas de manejo.

Nicholls y Altieri, (2008) han demostrado que la habilidad de un cultivo de resistir o tolerar el ataque de insectos plagas y enfermedades, está ligada a propiedades biológicas del suelo; así el termino suelo saludable es una derivación del concepto de calidad de suelo, diferenciándose según Bautista-Cruz *et al.*, (2004) en los indicadores y temporalidad de la evaluación, en vista que mientras la calidad ha sido relacionada a la multifuncionalidad y sostenibilidad en la utilización del suelo para un propósito específico, la salud está condicionada por su dinámica en un tiempo específico; siendo algunos de los indicadores: contenido de materia orgánica y diversidad de organismos.

4.5.1 Estado del suelo.

Se evaluó a partir de las propiedades químicas y biológicas. Del conjunto de monolitos se colectó dos muestras compuestas, de 2 kilogramos de suelo, para determinar propiedades químicas y físicas en el Laboratorio de Suelos y Agua (LABSA) de la Universidad Nacional Agraria.

Para determinar las relaciones entre las propiedades físico-químicas y la densidad de macrofauna, se utilizó la técnica multivariada de Análisis de Componentes Principales. Así mismo, la influencia de las propiedades del suelo, y su relación con las prácticas agronómicas.

4.6 Evaluación de la funcionalidad de los componentes asociados a dos sistemas de manejo de M. oleifera como indicadores del proceso de conversión.

La identificación de interacciones entre componentes del sistema se realizó a través de una clasificación de la función de cada especie, sus requerimientos o exigencias del hábitat y tipos de interacciones; y sus posibles asociaciones y antagonismos con otros componentes.

El modelo de conversión agroecológica cuyo cultivo principal fue *M. oleifera* surgió de la visión de sistema que a la vez se sustentó en un análisis con enfoque de complejidad para llegar a entender el grado de funcionalidad ecológica. Diferentes autores visualizan la funcionalidad como la utilización real y coherente de los procesos (sinergias y antagonismos) y organismos vivos que participan en la planificación, producción y distribución de los beneficios del usufructo de la tierra como recurso natural.

Desde los fundamentos de ecología, la complejidad de la estructura de un sistema es un indicador de la funcionalidad del mismo. Una de las interacciones importantes e incidentes en la productividad del sistema es la existente según Blanco y Leyva (2013) entre la cobertura expresada en arvenses y cultivos de cobertura, y la diversidad de entomofauna funcional dentro del sistema.

Otra propuesta metodológica para la evaluación de la funcionalidad del modelo agroecológico fue el análisis de una trama de red trófica propuesta por Odum, (1971). Esta metodología se constituyó en un modelo que de manera simplificada permitió, por un lado, presentar los componentes de la estructura del agroecosistema, y complementariamente, entender las relaciones entre ellos (Gráficos 16 y 17), reconociendo así la importancia ecológica de los elementos, procesos y organismos dentro de los sistemas ecológicos. Tal como lo establece la metodología de Odum, (1971), el modelo representado en el diagrama se construyó por simbología propia de cada componente y proceso (Gráfico 7).

Candelaria-Martínez et al., (2011), mencionaron que el desarrollo de modelos para la representación de sistemas de cultivos se ha utilizado a lo largo de los años para representar y evaluar diferentes procesos bajo distintos enfoques y disciplinas.

4.7 Determinación del efecto de las medidas de manejo sobre la productividad del sistema agroecológico de M. oleífera.

4.7.1 El rendimiento como indicador.

El análisis de la productividad del sistema como uno de los indicadores de rentabilidad del mismo se realizó mediante la clásica medición del rendimiento de los cultivos, es decir, producción por unidad de área, expresados en kilogramos de granos por hectárea, y biomasa (kg) por hectárea.
En este caso se realizó una comparación del rendimiento de semilla de *M. oleifera* entre el sistema convencional y el sistema en conversión agroecológica para proveer elementos de análisis de la efectividad de las prácticas agroecológicas sobre la estabilidad de la cosecha.

4.7.2 Diversidad productiva

Indicadores con enfoque agroecológico fueron cuantificados para determinar elementos de sostenibilidad del modelo en relación al uso intensivo del suelo, y la diversidad productiva promovida.

La diversidad de la producción fue cuantificada mediante el método propuesto por Funes-Mozonte *et al.* (2011), definiéndose como un valor sustentado en el cálculo del índice de diversidad de Shannon-Wienner modificado.

La modificación propuesta por el autor consistió en la sustitución de las unidades de medida de los elementos pi y P, que en la fórmula original desarrollada por Magurran, (1988) representaron la abundancia de cada especie (pi) en relación a la abundancia de todas las especies (P); mientras que en la modificación, pi representan la producción (rendimiento por hectárea) de cada cultivo en el sistema, y su relación con P, que corresponde a la producción total (rendimiento por hectárea) de toda la biodiversidad productiva en el sistema, es decir la producción total de biomasa (granos y forraje producidos por *M. oleifera* y las leguminosas en policultivo). El rendimiento en forraje correspondió al peso fresco cuantificado en el año 2016. La ecuación del índice de la diversidad de la producción se presenta a continuación:

\[
H_s = - \sum_{i=1}^{S} \frac{p_i}{P} \ln \left(\frac{p_i}{P} \right)
\]

Dónde: $S = \text{número de cultivos}; p_i = \text{producción de cada cultivo}; P = \text{producción total}$.

La importancia de este índice radica en la oportunidad de generar una visión completa de las opciones productivas del sistema. Los valores alcanzados en un rango de 1.5 a 3.5 indican alta diversidad productiva del sistema según Magurran, (1988). Por cuanto, en la medida que un sistema incrementa su diversidad productiva como parte del proceso de conversión agroecológica, es de esperar valores altos para este indicador de la productividad.
4.7.3 Índice de Utilización de la Tierra (IUT).

Como parte de los indicadores agroecológicos asociados al modelo, se cuantificó el Índice de Utilización de la Tierra (IUT) propuesto por Funes-Mozonte et al., (2011) para analizar la intensificación en el uso de la tierra por el policultivo manejado como parte del modelo de producción de semillas de *M. oleifera*, en comparación al sistema convencional en monocultivo.

Bajo el enfoque de sistemas complejos para la sostenibilidad, un alto uso intensivo de la tierra a través de policultivos, prácticas de rotación, entre otras, incrementan la productividad por unidad de superficie del sistema.

La ecuación para el cálculo de este indicador fue la siguiente:

\[\text{IUTs} = \sum_{i=1}^{s} \frac{P_i}{M_i} \]

Dónde: \(S \) = número de cultivos; \(P_i \) = rendimiento del cultivo (kg) en policultivo; \(M_i \) = rendimiento del cultivo (kg) en monocultivo.

Desde el punto de vista de producción, la manera práctica de entender este indicador es asumiendo que permite cuantificar si al pasar un área agrícola de un sistema de monocultivo a un sistema de policultivo, la asociación provocará cambios negativos en el rendimiento.
V. RESULTADOS Y DISCUSION

5.1 Principios aplicados a la primera fase de la conversión agroecológica como modelo de una agricultura sostenible.
Como parte de un modelo de agricultura sostenible, los sistemas y prácticas agroecológicas son la expresión de los principios que presentan a la agroecología como un modelo de agricultura de procesos ecológicos. Tanto en el diseño como en la evaluación de los sistemas en esta investigación, además de los procesos ecológicos abstractos fueron traducidos a indicadores que se constituyeron en la meta del trabajo (Gráfico 8).

5.1.1 Fase I de Conversión agroecológica del sistema productivo de semilla de M. oleifera.

Del análisis de los elementos del modelo agroecológico se debe resaltar que desde la primera fase de implementación, se obtuvo resultados que figuran entre los principios, y su expresión en indicadores tangibles de sostenibilidad en modelos alternativos de agricultura, entre los que sobresalieron: reducción de la demanda de combustible en la preparación de suelo y mantenimiento del cultivo, eliminación de la entrada de fertilizantes inorgánicos, por lo que la sustitución por compost representó reducción del 83% en el costo de fertilización (figura 7), así como en la cantidad de Nitrógeno introducido al sistema (100 kg/ha en manejo convencional vrs. 80 kg/ha en conversión agroecológica), en comparación a las aplicaciones reportadas por Mendieta-Araica, (2011); reducción que según Garratt et al., (2018) influye en la disminución de poblaciones de plagas potenciales de la biodiversidad productiva del sistema.

Otro principio en esta fase fue el aumento de la complejidad del sistema, tanto a nivel de estratificación, como en la riqueza de especies, por incremento de la biodiversidad productiva (tres especies en interacción). Esta práctica contribuyó a la intensificación ecológica del sistema, cuyo beneficio tangible fue la estabilización del contenido de materia orgánica, que de acuerdo con Garratt et al., (2018) es un recurso que soporta los procesos ecológicos o servicios ambientales, desde un enfoque de agroecosistemas.
Al romper la estructura de monocultivo y eliminar insumos inorgánicos se logró modelar un sistema más eficiente en la ocupación del espacio en pro de una mayor intensificación en el uso de la tierra, mientras desde el punto de vista ecológico la composición de leguminosas constituyó un proceso de facilitación, que de acuerdo con Altieri et al., (2017) puede ser analizado desde diferentes opciones, siendo aplicables en esta fase de la conversión el mejoramiento de la disponibilidad de nutrientes para ser utilizados por *M. oleifera* u otro cultivo como parte de la práctica de rotación.

En el mismo sentido Altieri et al., (2017) mencionaron el efecto positivo sobre la productividad de los sistemas diversos (en estructura de policultivo) al presentarse al mismo tiempo especies contrastantes, que en este caso fueron *Canavalia ensiformis* y *Canavalia brasiliensis*, ambas fijadoras de nitrógeno atmosférico y fosforo; y *M. oleifera* como especie demandante del nitrógeno facilitado.
Procesos como control biológico a través de conservación de la diversidad de entomofauna, flujo de energía y masa, a partir de incorporación de materia orgánica en el suelo, sostenibilidad en la productividad mediante estabilización y diversificación de la biota productiva; y baja dependencia de entradas artificiales han sido factores priorizados para el cumplimiento de los principios agroecológicos en la primera fase de implementación del modelo de conversión agroecológica presentado (Gráfico 8).

Las siguientes secciones presentan la tendencia en cuanto a la dinámica de la biodiversidad dentro del sistema de conversión agroecológica, comparándose con los resultados del sistema convencional. Es en estas secciones que tema de bioindicadores resulta una herramienta practica para construir un marco de evidencias sobre cada componente del proceso de conversión agroecológica.

5.1.2 Diversidad de organismo como efecto de la modificación del hábitat.

Diversidad de Artrópodos por sistema de manejo

Fue registrada una notable fluctuación de poblaciones de artrópodos asociados, por un lado, a una mejor estructuración de hábitat, y la eliminación de aplicaciones de insecticidas. La figura 6, muestra mayor abundancia de artrópodos en conversión agroecológica (980 individuos), en comparación al sistema convencional (800 individuos).

![Gráfico 9](Gráfico 9.Fluctuación poblacional de artrópodos en dos sistemas productivos de semilla de M. oleifera en la Universidad Nacional Agraria. 2013-2014.)
En el caso del sistema de conversión agroecológico, la fluctuación en el número de individuos colectados se vio potenciada por los periodos de floración de leguminosas dentro del sistema; siendo noviembre y diciembre el inicio y periodo de máxima floración de *Canavalia ensiformis* y en el mes de enero se dio para el caso de *Canavalia brasiliensis*, lo que generó incremento en la presencia de individuos mostrada en el Gráfico 9.

Desde el punto de vista de los indicadores de la biodiversidad asociada, el cuadro 2 muestra las diferencias entre sistemas de manejo, siendo más evidentes a nivel de familia; por lo que siendo el taxón que aun cuando incluye una importante cantidad de géneros y especies, permite tener una primera aproximación de las diferencias entre sistemas productivos.

El índice de similitud de Jaccard, indicó una alta probabilidad (0.68) de similitud de familias entre el sistema en conversión agroecológica y el sistema convencional, lo que sugiere un importante número de familias presentes o compartidas entre ambos sistemas productivos; siendo el valor real de familias compartidas de 19. Las familias presentes únicamente en conversión agroecológica como fueron Dermestidae, Mutilillidae, Miridae, Calliphoridae, Cerambycidae, Anthocoridae, Cydnidae, entre otras, sugieren condiciones como mejor calidad de hábitat a partir de la cobertura generada por el asocio con leguminosas, así como menos aplicaciones de químicos inorgánicos, por ser requerimientos para la presencia de estas familias.

Cuadro 2. Biodiversidad de artrópodos asociados a dos sistemas de producción de semilla de M. oleifera en la Universidad Nacional Agraria

<table>
<thead>
<tr>
<th>Nivel taxonómico</th>
<th>Conversión agroecológica</th>
<th>Manejo convencional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orden</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Familia</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>Especie</td>
<td>69</td>
<td>52</td>
</tr>
</tbody>
</table>

De la composición de especies en conversión agroecológica se registró diferencias en la proporción por grupo funcional, con 49.2% clasificados como defoliadores potenciales, 42.02% categorizados como organismos benéficos y a un 8.6% no se le encontró registro del efecto sobre cultivos.
Al comparar con la funcionalidad de artrópodos en el sistema convencional, se identificó una ligera diferencia en la proporción de defoliadores potenciales (51.9%), y menor proporción de organismos benéficos (40.3%).

Entre las especies dominantes en conversión agroecológica fueron registradas *Chrysoperla externa*, cuya importancia, según Vázquez y Fernández, (2007) radica en su función de entomófago en vista que sus larvas y adultos son depredadores de insectos fitófagos como mosca blanca y algunos géneros de áfidos, por lo que su papel de controlador biológico le da una connotación particular en el sistema (Anexos 3 y 4).

Especímenes de *Solenopsis sp.*, tuvieron una importante relación con la presencia de leguminosas en el sistema de conversión agroecológica en cuanto a la polinización de estas, y complementariamente realizaron funciones de depredación de larvas; y transporte de detritos al interior del suelo (Anexo 4).

Otras especies con efectos positivos en procesos del sistema de conversión agroecológica fueron *Trigona sp.*, *Vespa sp.*, *Polibya sp.*, *Pepsis sp.*, con funciones de polinizadores y depredadores de larvas de otros artrópodos fitófagos (Loya, *et al.*, 2003), y *Xylocopa micans*, y *Cotinis mutabilis* por su efecto de polinizadores de las leguminosas y también depredadores, como parte del control natural de plagas del sistema.

Esta composición de artrópodos entomófagos es un indicador de eficiencia en la estructuración de hábitats a través de diversificación del agroecosistema y, según Martínez y Vázquez, (2013) sugieren un alto potencial de conectividad entre dos principios del manejo agroecológico para la supresión de plagas, la mojara por diversificación y la funcionalidad por incremento de las interacciones entre los organismos.

5.2 Diversidad y distribución de la macrofauna edáfica por sistema de manejo

El efecto de las prácticas cuyo propósito estuvo en la activación biológica del suelo, fue perceptible, al igual que con el grupo de los artrópodos, a través de la densidad y diversidad de organismos por sistema productivo.
El sistema en conversión agroecológica registró la mayor diversidad taxonómica de la macrofauna edáfica, con tres phylum, cinco clases, nueve órdenes y 19 familias; en comparación con un phylum, tres clases, dos órdenes y cuatro familias identificadas en el sistema convencional.

La densidad de individuos fue estadísticamente diferente ($p < 0.05$) entre sistemas de manejo; se registraron 7424 ind/m2 en conversión agroecológica, en comparación con 1984 ind/m2 en manejo convencional. El resultado de las diferencias en densidad de organismos entre sistemas coincide con los obtenidos por Díaz-Porres et al., (2014), y Matienzo-Brito et al., (2015) quienes reportaron diferencias en la densidad y diversidad de macrofauna edáfica entre sistemas diversos y sistemas simplificados; causado por la complejidad y manejo de los sistemas, encontrando que, a mayor diversificación, mayor actividad biológica.

Gráfico 10. Densidad de macrofauna edáfica por profundidad de muestreo en sistemas productivos de M. oleifera en la Universidad Nacional Agraria.

La mayor densidad acumulada de organismos fue registrada en los primeros 20 centímetros del suelo (7488 ind/m2); con alta concentración en la profundidad 0 a 10 cm (5296 ind/m2); y densidad similar entre hojarasca con la profundidad 20 a 30 centímetros (Gráfico 10).
Los resultados de ambos parámetros permiten asumir la hipótesis del efecto de la práctica de diversificación sobre las propiedades biológicas del suelo, al considerar como factores positivos, incremento de la cobertura del suelo, y por tanto mayor disponibilidad de materia orgánica, eficiencia en la conservación de la humedad del suelo, mantenimiento de la estructura y temperatura del hábitat. En este sentido, se ha planteado que la biodiversidad en la agricultura difiere entre agroecosistemas, que a la vez se diferencian en indicadores relativos al tiempo de establecimiento, la composición de especies y las prácticas agronómicas.

La distribución de familias por grupo funcional fue diferente entre sistemas de manejo, con predominancia de ingenieros del suelo (64,22 %) y detritívoros (27,37 %) en conversión agroecológica; y de detritívoros (74,19 %) y depredadores (25,81 %) en manejo convencional.

Los grupos funcionales de la macrofauna edáfica y su distribución en el perfil del suelo, fueron elementos diferenciadores entre los sistemas de manejo, identificando mayor funcionalidad a favor de cambios en la estructura y composición del suelo en el sistema de conversión agroecológica.

Entre el grupo funcional ingenieros del suelo, sobresalieron Termitidae y Formicidae con 48,3% y 10,7% respectivamente, de la densidad total de organismos en conversión agroecológica. Otro representante de este grupo funcional como Lumbricidae (4,7%), registró valores bajos en comparación al trabajo de Duran y Suarez, (2013), quienes reportaron la dominancia de miembros de Lumbricidae en una proporción de 78,5% de todos los individuos pertenecientes al grupo funcional ingenieros del suelo.

El razonamiento en cuanto a las diferencias de tipo y proporción de grupos funcionales, orienta hacia una asociación entre la predominancia de detritívoros con el uso poco intensivo del suelo y, por tanto, con un buen contenido de materia orgánica, lo que contribuyó complementariamente a la función de los ingenieros del suelo, y confirma que la diferencia en la composición de los grupos funcionales estuvo asociada a las condiciones del hábitat.
Desde un punto de vista intangible, una reducción en la alteración al hábitat de organismos del suelo por compactación de la maquinaria, o volteo a la estructura del mismo puede ser anotada. También debe ser considerado el incremento en la diversidad de artrópodos, en comparación con los valores registrados en el sistema convencional, al eliminar en el diseño agroecológico el uso de herbicidas y pesticidas.

Como parte de los servicios ecosistemicos del proceso de intensificación del manejo del suelo por el uso de coberturas Garratt et al., (2018) resalta el efecto sobre el incremento y/o mantenimiento del carbono orgánico en el suelo, el que, al medirse al final de la segunda fase, registró un incremento ligeramente superior al valor del sistema convencional.

5.3 Fase 2 de Conversión agroecológica del sistema productivo.

La fase 2 priorizó el manejo de interacciones mediante el mantenimiento de biodiversidad asociada de tipo benéfica, constituyendo la base de esta decisión, el análisis de compatibilidad entre especies productivas para hacer viable el rediseño. Las prácticas como corredores de biodiversidad constituidos por arven ses y arbustos (Anexo 2) entre parcelas, rotación de cultivos asociados, y la intensificación del uso de abono verde resultaron en una estabilidad de la funcionalidad de los organismos del suelo y mejoramiento en el balance (proporción) entre entomofauna benéfica y entomofauna nociva.

Como parte del análisis de la funcionalidad de componentes del ecosistema, se discuten los principios agroecológicos que rigieron el modelo de conversión en esta segunda fase:

Incorporación de diferentes tipos de biodiversidad, principio que facilitó el incremento de la biodiversidad productiva que estuvo constituida por 3 a 5 especies; y con ello el desarrollo de procesos ecológicos que promovieron estabilidad en el agroecosistema.

Souza-Casadinho (2010), argumentó ventajas a favor de mejoramiento de la biodiversidad en los agroecosistemas en cuanto a procesos como la demanda externa de energía asociada al logro de un eficiente reciclaje de nutrientes y el manejo de plagas. En este sentido, Altieri, (1999) sugirió que la biodiversidad en los agroecosistemas es clave para disminuir los riesgos por pérdidas derivadas de plagas, enfermedades, variabilidad en el clima, entre otros; que
actualmente son más frecuentes en sistemas de monocultivo o sistemas simplificados y de baja intensificación en el uso del suelo.

5.3.1 Balance de las poblaciones de artrópodos por sistemas de manejo.

Las estrategias implementadas para promover un mejor balance en la densidad y la diversidad de artrópodos a nivel del suelo y por encima de éste, consistieron en el manejo de cultivos de cobertura, abonos verdes, mantenimiento de hábitats para enemigos naturales dentro del cultivo; así como de cercas vivas. Nicholls (2001) analizó la función del mantenimiento de la biodiversidad durante el periodo de crecimiento más activo en los agroecosistemas, presentándola como una función relacionada al proceso de supresión biológica de plagas; que de acuerdo son Vásquez, (2011) se traduce a un control ecológico como parte de la transición a una mayor eficiencia.

La composición de artrópodos en conversión agroecológica mostró mayor estabilidad reflejada en los valores de diversidad en esta segunda fase de la conversión, en comparación al sistema convencional. La proporción de fitófagos versus enemigos naturales y con potencial benéfico registró un mejor balance en conversión agroecológica (48.2% fitófagos vrs 45.4% entomofauna benéfica) (Gráfico 11), en comparación al sistema convencional (52.1% fitófagos vrs 40.3% entomofauna benéfica); y en comparación a la primera fase, lo que indicó evolución del sistema en cuanto al control biológico de plagas potenciales.
Gráfico 11. Distribución porcentual de grupos funcionales en el modelo de conversión agroecológica del sistema de producción de semilla de *M. oleifera*.

Como resultado de la diversificación del sistema, el mantenimiento de corredores con arvenses y las características fenológicas de especies en conversión agroecológica se incrementó la diversidad de polinizadores de las familias *Vespidae* y *Apidae*, reconociendo que Díaz-Torres, (2001) resaltó el importante rol que juega este grupo desde el punto de vista del mantenimiento de la diversidad genética de cultivos, y el efecto de control por entomofagosis que ejercen sobre algunos insectos. Bajo este mismo enfoque la presencia de cercas vivas y corredores de arvenses permitió la presencia de depredadores como arañas de la familia *Saltisidae*, y la especie *Tailless whipscorpions* reconocidos controladores de larvas e insectos.

Un efecto de la mayor diversidad de especies de leguminosas asociadas en el sistema en esta segunda fase, fue el control sobre la incidencia de fitófagos sobre *M. oleifera*, al funcionar como cultivo trampa (Hilje, 2008).
La dinámica planteada es soportada al explicarse que “a medida en que logró transformar el sistema de simple a complejo y se redujo el uso de plaguicidas químicos, las plagas potenciales se registraron en menor proporción (nuevas poblaciones), y por tanto el control ecológico se proyectó como más apropiado” (Vásquez, 2011).

Mediante análisis de adyacencia con hábitats como cercas vivas multiestrato y parches de vegetación secundaria, se determinó similitud de especies de artrópodos entre el área de conversión agroecológica y los hábitats adyacentes al sistema convencional (Gráfico 5) demostrándose que prácticas de manejo convencional como el uso de pesticidas, herbicidas y la eliminación de flora espontánea reduce y/o elimina la biodiversidad del área de cultivo, sustituyendo las interacciones entre organismos y otros procesos originados en éstas.

Según Altieri, (1999), el éxito del manejo de la biodiversidad en los agroecosistemas radica en la promoción de sinergismos y asociaciones positivas que modelen los procesos de autorregulación, y equilibrio que alcanzan los sistemas naturales. Por tal razón se plantea, que los componentes como biota planeada, biota acompañante, y destructiva son la base de la complejidad que a la vez se expresa en los niveles de biodiversidad tanto vertical como horizontal, y temporal.
Gráfico 12. Similitud en la composición de artrópodos en conversión agroecológica y manejo convencional, en relación a áreas adyacentes a los sistemas de producción de semilla de *M. oleifera*.

La similitud entre los artrópodos dentro del sistema agroecológico y las áreas adyacentes al manejo convencional alcanzó un porcentaje de 38%, (Gráfico 12) y estuvo principalmente asociado a organismos altamente funcionales como *Tailless whipscorpions*, *Camponotus sp.*, *Trigona sp.*, *Xylocopa micans*, y *Cotinis mutabilis*.

Como parte del análisis de cambios en la diversidad de artrópodos durante el proceso de conversión agroecológica, se resumen los resultados de la riqueza de familias y especies, taxones que variaron en número durante los tres años de monitoreo y por tanto entre fases; así como entre sistemas de manejo (Cuadro 3).
Cuadro 3. Cambios en la diversidad de Artrópodos en dos sistemas de manejo de *Moringa oleifera*.

<table>
<thead>
<tr>
<th>Indicadores de diversidad</th>
<th>Sistema Convencional</th>
<th>Conversión agroecológica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Año 1</td>
<td>Año 2</td>
</tr>
<tr>
<td>Número de Familias</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>Número de especies</td>
<td>52</td>
<td>32</td>
</tr>
<tr>
<td>Diversidad Shannon-Wiener</td>
<td>2.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Los puntos claves en el análisis de la diversidad de artrópodos están en función, en primer lugar en la mayor diversidad contenida en el sistema de conversión agroecológica, lo que tiene su fundamento conceptual en el principio de concentración de recursos y por tanto un notable dinamismo de los procesos asociados a transformación de materia y complementariamente, procesos o relaciones de regulación de poblaciones por efecto de recurrencia en el nicho y funcionalidad al registrarse alta diversidad de artrópodos.

El segundo punto clave, deriva en una tendencia a mayor estabilidad de la diversidad expresada tanto a nivel del número de familias, especies y los valores del índice de Shannon, lo que a mayor plazo sugiere mejoramiento en la productividad del sistema.

5.3.2 Indicadores de mejoramiento de la salud del suelo como estrategia para incrementar la productividad.

Efecto de las prácticas sobre las propiedades del suelo.

Con base en el principio de mejoramiento de la salud del suelo por efecto de las prácticas de cada modelo de producción, se hace énfasis en los cambios experimentados durante los años 2 y 3 que constituyeron la segunda fase del proceso de conversión agroecológica.

Para la mayoría de los parámetros evaluados, los cambios correspondieron a incrementos en el sistema de conversión agroecológica (*Cuadro 4*), lo que indica el cumplimiento del principio propuesto por Nicholls _et al._, (2016) en cuanto a la necesidad de promover una activación biológica del suelo para soportar el proceso de incremento de la biodiversidad.
Cuadro 4. Cambios en las propiedades químicas del suelo en dos sistemas de manejo de *M. oleifera*

<table>
<thead>
<tr>
<th>Propiedades del suelo</th>
<th>Manejo convencional</th>
<th></th>
<th>Conversión agroecológica</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Año 2013</td>
<td>Año 2016</td>
<td>Año 2013</td>
<td>Año 2016</td>
</tr>
<tr>
<td>pH</td>
<td>6.54</td>
<td>7.45</td>
<td>6.58</td>
<td>7.08</td>
</tr>
<tr>
<td>M.O (%)</td>
<td>3.11</td>
<td>2.58</td>
<td>4.40</td>
<td>3.20</td>
</tr>
<tr>
<td>C.O (%)</td>
<td>1.29</td>
<td>1.71</td>
<td>1.68</td>
<td>2.18</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.14</td>
<td>0.11</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>P (ppm)</td>
<td>35.70</td>
<td>20.17</td>
<td>ND</td>
<td>38.47</td>
</tr>
<tr>
<td>CIC</td>
<td>33.25</td>
<td>27.67</td>
<td>27.10</td>
<td>28.05</td>
</tr>
</tbody>
</table>

ND: No determinado por el método.

De acuerdo con los indicadores de salud del suelo propuestos por Garratt *et al.*, (2018) el sistema de conversión agroecológica al presentar un mayor contenido de materia orgánica (3.20%), en comparación al manejo convencional (2.58%) mostró un mayor potencial para el sostenimiento de procesos asociados a productividad, como retención de la humedad del suelo, eficiencia en la trasformación de la estructura del suelo, y mantenimiento de alta diversidad de organismos funcionales (*Cuadro 4*).

Bautista-Cruz *et al.*, (2004), asociaron el mejoramiento de la capacidad de captura de carbono orgánico en el suelo a prácticas de labranza implementadas en los modelos de agricultura, sugiriendo un efecto positivo a favor de la utilización de prácticas de labranza minina, labranza de conservación o labranza cero, en comparación a la preparación convencional del suelo; supuesto que es asumido al comprar el contenido de carbono orgánico entre sistemas (*Cuadro 4*).

La macrofauna edáfica como indicador del efecto de prácticas agroecológicas.

La hipótesis que establece una relación de dependencia entre la calidad del hábitat y la biodiversidad fue comprobada al registrar valores más altos de los indicadores densidad, número de familias e índice de diversidad en conversión agroecológica. Dicha hipótesis sustenta tanto el incremento en la densidad para 2014 y 2015; así como relativa estabilidad en dicho indicador durante el periodo de monitoreo, aun cuando el periodo en cuestión estuvo marcado por la ocurrencia del fenómeno del niño (*Cuadro 5*).
Cuadro 5. Cambios en la diversidad de macrofauna edáfica en dos sistemas de manejo de *M. oleifera*

<table>
<thead>
<tr>
<th>Indicadores de diversidad</th>
<th>Sistemas de Manejo</th>
<th>Sistema Convencional</th>
<th>Conversión agroecológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad (Ind/m2)</td>
<td>2160</td>
<td>2893</td>
<td>4192</td>
</tr>
<tr>
<td>Número de Familias</td>
<td>4</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Índice de Comunidad</td>
<td>0.43</td>
<td>0.32</td>
<td>0.22</td>
</tr>
</tbody>
</table>

La mayor densidad acumulada de organismos fue registrada en los primeros 20 centímetros del suelo (7488 ind/m2); con alta concentración en la profundidad 0 a 10 cm (5296 ind/m2); y densidad similar entre hojarasca con la profundidad 20 a 30 centímetros.

Ararat *et al.*, (2002) y Fernández *et al.*, (2015), relacionaron la alta concentración de organismos en los primeros centímetros del perfil de suelo con la utilización de cultivo de cobertura de leguminosas (en este caso canavalia, gandul, caupi), que induce una disminución en la intensidad de luz y del impacto de las gotas de lluvia; además de la reducción en la temperatura del suelo; e implica procesos biológicos de éste como son: retención de humedad, aireación, mantenimiento de la biodiversidad funcional y eficiencia del ciclo de nutrientes, provocada según Duval *et al.*, (2014) por el incremento gradual de compuestos asociados a la fracción mineral, y por tanto una fracción más transformada de carbono o materia orgánica lábil.

Diferentes autores, entre ellos Díaz-Porres *et al.*, (2014), demostraron que la incorporación de residuos de cosechas, sobre todo cuando estos tienen alto contenido de nitrógeno (leguminosas), promueve un incremento en la densidad de individuos. Tendencia a mayor estabilidad fue registrada en relación a los indicadores número de familias e índice de la comunidad al comparar ambos sistemas de manejo. Alta densidad y diversidad de grupos funcionales ingenieros del suelo y detritívoros en conversión agroecológica explica y sustentan los cambios en las propiedades del suelo, y aportan al principio de suelo saludable.
Matienzo-Brito et al., (2015) señalaron que el número de grupos funcionales difiere debido a la complejidad en la composición de los ecosistemas, con ventaja para los sistemas diversificados con manejo de biota auxiliar; ello permite explicar la presencia de grupos con funciones de acumulación y transformación de la biomasa, como son los ingenieros del suelo y los detritívoros.

La determinación de asociación entre variables edáficas y macrofauna del suelo a partir del análisis de componentes principales presentó una alta confiabilidad al explicar en los dos ejes de la componente principal 97.6% de la variabilidad acumulada correspondiente a la densidad de individuos por sistema de manejo (Gráfico 13).

Las variables edáficas relacionadas a la presencia de macrofauna presentaron mayor asociación en conversión agroecológica (Gráfico 13). Las propiedades con mayor grado de asociación entre sí fueron el porcentaje de Nitrógeno y Materia orgánica, Capacidad de intercambio catiónico y Carbono orgánico; sin embargo, las variables respuesta asociadas a la presencia de macrofauna fueron contenido de carbono orgánico, fosforo y potasio disponible, y porcentaje de humedad, lo que permitió determinar un notable dinamismo en el ciclaje, disponibilidad y flujo de nutrientes en conversión agroecológica.
Gráfico 13. Diagrama de distribución de las familias más importantes de la macrofauna edáfica en los componentes principales (CP1 y CP2) a partir de variables de suelo en dos sistemas de manejo de *M. oleifera* en la Universidad Nacional Agraria.

En el sistema convencional las variables respuesta fueron el pH y el porcentaje de humedad del suelo, determinándose baja relación entre sí. Los grupos de mayor representación de la macrofauna edáfica en este sistema tuvieron alta asociación con el porcentaje de humedad del suelo.

Fue determinada asociación entre las familias más representativas de la macrofauna y las variables edáficas, siendo la excepción la familia Salticidae cuyo nicho está circunscrito al estrato superficial del suelo, y Curculionidae; explicando de esta manera la influencia del manejo de los sistemas sobre grupos específicos y las características biológicas del suelo.

La presencia de las familias Formicidae, Termitidae, y Escarabaeidae, pertenecientes al grupo funcional ingenieros del suelo, estuvo asociada a la disponibilidad de fosforo y potasio.
Las familias Armadillidiidae, y Lumbricidae, también incluidas dentro del grupo ingenieros del suelo presentaron asociación con el porcentaje de humedad del suelo; al igual que organismos de la familia Julidae, que ejercen el rol de detritívoro, y cuya importancia radica en consumir hojas de bajo valor nutritivo y excretarlas transformadas (fragmentadas), facilitando el consumo para otros organismos de la macrofauna edáfica (Chávez et al., 2016), incrementado la materia en descomposición en el agroecosistema (Gráfico 13).

Padoa et al., (2012) determinó asociación entre la abundancia biológica de la familia Julidae y la relación Carbono/Nitrógeno en seis arreglos de cultivos que tuvieron como prácticas la no labranza, el uso de gandul como cobertura y rotaciones, prácticas comunes al sistema de conversión agroecológica y por tanto que refleja la relación entre las prácticas de agricultura sostenible y la calidad biológica del suelo.

Para el caso de Lumbricidae, las variables respuesta asociada a la presencia difiere del trabajo realizado por Masin et al., (2015) en donde se determinó asociación con la materia orgánica, capacidad de intercambio catiónico, nitrógeno total y el pH; diferencia dependiente del hábito epigeo o endógeno de las especies de dicha familia. Padoa et al., (2012) por su parte determinaron asociación entre la abundancia y el nitrógeno contenido a los 10 centímetros de profundidad.

Castro et al., (2008) determinaron que especies de la familia Formicidae al transportar restos vegetales y animales hacia el interior del suelo concentran en sus nidos, y alrededor altos niveles de fósforo lo que permite explicar la asociación entre este elemento y la densidad de hormigas cuantificadas en el sistema conversión agroecológica.

Complementariamente, Castro et al., (2008) encontraron relación entre la distribución de Formicidae y la humedad, comprobando que bajos valores de humedad incrementan la densidad y diversidad; lo que permite adicionar otro elemento a la explicación de la presencia de Formicidae en todo el perfil muestreado, debido a que el bajo porcentaje de humedad registrada (tabla 1), el que fue menor al 30% durante el periodo de evaluación generó un hábitat propicio para este grupo.
Fernández et al., (2015) evidenció la asociación existente entre la variable humedad y pH con la riqueza y densidad de especies de la macrofauna edáfica, por lo que se puede explicar a través de esto la presencia de las familias Scolopendridae y Leptoceridae las que presentaron asociación con el porcentaje de humedad del suelo; por el contrario, la presencia de Hydropsychidae estuvo asociada a la variable pH.

Mantener la calidad de los suelos y la productividad de los cultivos es un desafío importante para la agricultura moderna. Prácticas de manejo agroecológico que tienden a incrementar el contenido de carbono del suelo y a la vez favorecer la supervivencia y actividad microbiana pueden contribuir a la sustentabilidad de los sistemas agrícolas (Ferreras et al., 2015); efectos que pueden ser evaluados a través de la composición y funcionalidad de las propiedades biológicas del suelo, entre la que destaca la macrofauna edáfica, por la facilidad de colectarla.

Según Navarrete et al., (2011), la habilidad que tiene el suelo de sostener la productividad biológica debe ser evaluada con base en su funcionalidad específica, destacándose entre los procesos, la productividad relacionada a la biodiversidad. Ferreras et al., (2009), y Navarrete et al., (2011) coincidieron en que la evaluación de la calidad del suelo permite entender el grado en que las prácticas de manejo aportan a la sostenibilidad; mientras la funcionalidad resalta entre los indicadores; en vista que integra a los componentes biológicos, químicos y físicos, en determinadas situaciones de manejo. Es desde este enfoque que, la macrofauna edáfica resultó ser un indicador de interés para la valoración de la eficiencia de prácticas agroecológicas, y su aporte a la calidad y salud del suelo.
5.4 Mantenimiento de la productividad del sistema agroecológico, a partir de incremento en la eficiencia de los procesos ecológicos asociados a la diversidad biológica y utilización del suelo.

Desde una de las dimensiones de productividad planteadas por Martínez, (2002), este indicador es el resultado del manejo de la biodiversidad y la tendencia hacia un suelo saludable.

Complementariamente, la productividad es vista desde la diversidad de productos que se generó dentro del sistema de conversión agroecológica y su impacto en la seguridad alimentaria, resiliencia a la sequía, entre otros. Mientras que, bajo el enfoque de análisis de rendimiento por unidad de área establecido por el modelo de agricultura convencional, el sistema en conversión agroecológica alcanzó rendimientos similares al sistema convencional de alta dependencia de insumos.

Como parámetro indicador de la productividad entre sistemas de manejo, el rendimiento del número de frutos por planta en cada sistema de manejo (35 en conversión agroecológica vrs 39 en convencional) no fue estadísticamente diferente. Mientras el rendimiento en los asocios con las especies de canavalías registró diferencias estadísticas (Grafico 14), siendo estas diferencias objeto de análisis desde la perspectiva de compatibilidad del asocio.

Al analizar la compatibilidad de los asocios, fueron registradas diferencias en el crecimiento de plantas de moringa entre sistemas, con reducción en el crecimiento diámetro en el asocio entre *M. oleifera* con *C. brasiliensis*, que por el crecimiento voluble de esta última generó estrangulamiento en algunas plantas y por tanto interacción de tipo negativa que influyó en el potencial productivo de las plantas.

En otros casos documentados por Edward *et al.*, (2012) y Valdés *et al.*, (2014) se concluyó en efectos relativos a la reducción de parámetros como incremento diamétrico, y rendimiento de semillas, cuando se ha evaluado el efecto del asocio de moringa con otras especies.

Complementariamente, el rendimiento basado en el número de semillas por fruto (*Gráfico 15*), el cual no registró diferencias estadísticas contribuyó a rechazar una hipótesis común entre los promotores de agricultura convencional, quienes aducen notable reducción en los rendimientos en sistemas de agricultura sostenible.

*Gráfico 15. Producción de semillas por fruto en dos sistemas de manejo de *M. oleifera*

Con base en el cálculo de la producción total (6458 kg de biomasa: semilla y follaje) del sistema en conversión agroecológica, se determinó un Índice de Utilización de la Tierra (IUT) de 4.06, que sugiere primeramente, uso intensivo del suelo, y por otro lado, que bajo las condiciones de suelo, clima local y de manejo en que se desarrolló el modelo, es posible una productividad que por un lado aportaría a la seguridad alimentaria de productores de zona seca y que estaría en función del mantenimiento del sistema.
Así mismo, el IUT permite planificar y evaluar de manera periódica el proceso de transformación continua del modelo; orientando el proceso de conversión agroecológico más mayor intensificación en el uso del suelo (por diversificación, manejo ciclo de los componentes del sistema, y una mayor diversificación de los beneficios tangibles (producciones), y no tangibles del modelo.

5.5 Elementos resultantes sobre las ventajas y oportunidades del modelo.

Basado en Candelaria-Martínez et al., (2011) un modelo es una representación conceptual, numérica o gráfica simplificada de un sistema, donde se describen las variables dependientes e independientes de interés, características, recursos potenciales y limitantes; e interacciones entre elementos; siendo de interés emergente los bienes tangibles y servicios ambientales que representan las salidas del sistema.

El modelo propuesto en este trabajo es de tipo dinámico, el que conceptualmente representa un sistema en los que las variables respuesta (procesos ecológicos) son funciones del tiempo en que transcurrieron los ensayos de campo (tres años), permitiendo establecer tendencias en su desarrollo y evolución; complementariamente, desde una perspectiva agroecológica el término modelo, o modelo de agricultura conlleva la integración de las dimensiones socio-culturales, ecológicas, técnicas y financieras para la construcción de sistemas productivos, por lo que la clasificación en sistemas sostenibles y sistemas convencionales retoman dichas dimensiones.
Gráfico 16. Diagramas de Odum para representación de componentes del modelo de producción convencional de *M. oleifera*

El Gráfico 16, representa una aproximación al modelo de producción convencional cuyo punto de análisis está alrededor de mayor cantidad de entradas o fuentes artificial, asistido por menor cantidad de procesos autorregulados por el sistema mismo y, por tanto, asistidos; en comparación a modelos de agricultura sostenible; lo que desde el punto de vista de sistemas sugiere mayor número de actividades subsidiadas por insumos externos proveídos parte del manejador del sistema o agricultor.

Las entradas más notables asociadas al sistema convencional estuvieron en función de alta mecanización en el establecimiento y manejo del sistema, además de procesos de control fitosanitario, y mejoramiento de la fertilidad del suelo y; por tanto, dirigidas al aseguramiento de la productividad y rentabilidad del sistema.
También es importante destacar que las interacciones que se identifican en este modelo simplificado sugieren un agroecosistema con baja diversidad y complejidad, lo que lo hace altamente dependiente de insumos externos, y lo que a la vez determina una única salida, que corresponde a semilla de moringa, pocos servicios ambientales, alto potencial de generación de externalidades negativas.

Gráfico 17. Diagramas de Odum para representación de componentes del modelo de producción agroecológica de *M. oleifera*

El Gráfico 17, permite entender la representación del modelo de conversión agroecológica de producción de semilla de moringa, y es una posibilidad de diferenciar los principales elementos y procesos, frente al modelo convencional presentado en la figura 5.

En primer término, se resaltó la reducción en las entradas o fuentes artificiales, principalmente producto de la promoción de procesos ecológicos como autorregulación de plagas por medio del mantenimiento de corredores de arvenses para conservación de enemigos naturales, cultivos trampa, la reducción en el uso de combustible fósil al cambiar
el método de preparación del suelo a labranza mínima, y reducción en el costo de fertilización al pasar de fertilización inorgánica a orgánica (Gráfico 17).

Es con base en la reducción de entradas que se identificó menos procesos artificiales y, por tanto, menos necesidad de subsidiar procesos ecológicos del sistema, y menor dependencia de insumos externos.

El incremento en la complejidad del sistema sustentó los procesos ecológicos dentro del sistema, lo que fue perceptible en un mayor número de interacciones entre componentes y, también incrementó las opciones de bienes (salidas) producidos en el sistema. Complementariamente, la diversificación involucró eficiencia en servicios ambientales como conservación de biodiversidad, mecanismo de adaptación al cambio climático, incremento de la fertilidad del suelo y, por tanto, alto potencial de sostenibilidad.
VI. CONCLUSIONES

El sistema en conversión agroecológica representó un modelo de diseño pertinente para el proceso de transición hacia agricultura sostenible, cuyos pilares promovieron procesos como, reestructuración del agro ecosistema por medio de la implementación de policultivo, activación biológica del suelo, y conservación de biodiversidad funcional.

La evaluación con enfoque de sistema e integralidad propició elementos concluyentes sobre las diferencias en los valores de las variables respuestas, como diversidad de macrofauna edáfica, artrópodos, propiedades físicas del suelo, y productividad entre los modelos comparados.

La funcionalidad del modelo de conversión agroecológica estuvo basada en el auto funcionamiento del agroecosistema a través de procesos ecológicos, como mejora en las propiedades físicas y biológicas del suelo para el incremento de su fertilidad y salud, control de plagas, principalmente fitófagos, flujo de materia, conservación de la biodiversidad asociada y mantenimiento de la productividad de la biodiversidad productiva.

El enfoque de productividad, demostró una tendencia hacia la intensificación del sistema y por tanto, un notable potencial de sostenibilidad a favor del sistema en conversión agroecológica. Mientras la biodiversidad productiva mostró rendimientos alentadores frente a eventos de variabilidad climática en la zona seca del país.
IMPLICACIONES RELATIVAS A LOS RESULTADOS DEL PROCESO DE CONVERSIONES AGROECOLOGICA.

Los resultados del modelo analizado generan pautas para avanzar en el proceso de construcción de un marco de referencia de investigación ajustado a los fundamentos de la evaluación de agro sistemas en agroecología, a las realidades climáticas y biofísicas del entorno de la zona seca de Nicaragua, y el potencial de experimentación e innovación productiva del campesinado; evitando así omitir la esencia de la agroecología como expresión de cosmovisiones tradicionales, por un continuo desatino de enmarcar aspectos de tradición y cultura en dinámicas de una ciencia fragmentaria y/o atomizada.

Así, el estudio del proceso de conversión agroecológica demanda cambios en el paradigma del análisis fragmentado o por componente individual, y reactivo, hacia un paradigma causal-preventivo, este último propio del modelo de agricultura ecológica.

La necesidad de cambio en el análisis y comprensión del agro ecosistema, está íntimamente relacionada a una evaluación en función de procesos ecológicos, cuya dimensión va más allá del simple análisis del efecto de la acumulación de prácticas que muchos técnicos y productores priorizan, producto de lo que Altieri y Nicholls, (2007) definen como el “Síndrome de las Practicas.”

Entre los paradigmas a superar está la duración de la investigación con enfoque agroecológico y, por tanto, a favor de investigaciones de corte longitudinal; las que a largo plazo permitiría monitorear la transición como parte del proceso de conversión agroecológica, metodología que generaría elementos con implicaciones técnicas, socioeconómicas y culturales para la toma de decisiones sobre el tipo de conversión (vertical o longitudinal) a adoptar.

Un reto en cuanto a la dimensión de los procesos durante la conversión agroecológica de tipo vertical en sistemas de fincas, es la aplicabilidad del enfoque de utilización de bioindicadores, en vista, que ofrecen tendencias y certezas sobre el efecto de prácticas, y se ajusta con la realidad y experiencia en monitoreo, prevención y control de biodiversidad nociva, que poseen los agroecosistemas.
Desde la perspectiva técnica, o de diseño y manejo de sistemas agroecológicos se debe considerar que cada productor tiene visiones basadas en principios, intereses y condiciones diferentes en cuanto al manejo del agro ecosistema por lo que la caracterización, evaluación y cualquier intento de certificación no puede ser un listado de indicadores diseñados como si los sistemas fueran monocultivos ajustados a diseños experimentales de agricultura convencional.
VII. REFERENCIAS BIBLIOGRAFICAS

Fundación para el Desarrollo Tecnológico Agropecuario y Forestal de Nicaragua (FUNICA). 2012. Estado actual, oportunidades y propuestas de acción del sector agropecuario y forestal en Nicaragua. FUNICA. 1ª ed. 84.

Jiménez-Martínez, E; Lacayo, R.R; Mayorga, M.J; Somarriba, M.O. 2016. Identificación y diversidad de insectos asociados al cultivo de marango (Moringa oleifera) en Nicaragua. LA CALERA. Revista Científica de la Universidad Nacional agraria. 16(27):86-93.

VIII. ANEXOS

Anexo 1. Descripción de la simbología utilizada en la representación de los modelos convencional, y conversión agroecológica analizados en el trabajo.

En un primer plano, se estableció el límite del agroecosistema, cuya representación es el recuadro de tipo rectangular que contiene los componentes, y que permite identificar el proceso de modificación relativo a las entradas, a la vez fundamenta la escala y visión de la opción de manejo del sistema.

Las entradas, fuentes o recursos tanto naturales como artificiales de los procesos asociados a producción primaria del agroecosistema fueron representadas por los círculos amarillos, ubicados a lo externo del límite; siendo estas: Naturales como lluvia, luz solar, mientras, las artificiales fueron semillas, fertilizante, plaguicidas, y combustibles fósiles para preparación mecanizada del suelo, y transporte de insumos, y riego.

En la conceptualización de la representación de las salidas, o bienes tangibles y servicios del agroecosistema, se presentan con círculos de color café; siendo el caso para este modelo: Semilla y forraje de moringa, semillas y biomasa de las leguminosas, y servicios ambientales como conservación de la biodiversidad, incremento de la fertilidad del suelo a través del incremento de la materia orgánica y almacenamiento de carbono.

A lo interno del sistema, los organismos productores primarios como son las plantas, fueron representados en color verde, mientras los elementos que funcionan como almacén temporal o permanente de las fuentes o entradas al sistema se presentaron en color azul. Los hexágonos de color naranja representan los organismos consumidores que dependen o hacen uso de los recursos fijados y almacenados en el sistema. Los rectángulos a lo interno del diagrama representan las actividades de manejo que demandan fuentes naturales o artificiales para la obtención de los bienes y servicios del sistema.

Las líneas o flechas indican las vías energéticas y tramas de interacciones entre los componentes del sistema, lo que permitió identificar el conjunto de procesos ecológicos que ocurrieron. Otro elemento de la representación incluye las potenciales actividades comerciales o de intercambio asociadas a los bienes producidos en el sistema (Gráficos 16 y 17).
Anexo 2. Listado de arvenses identificadas en dos sistemas de producción de semilla de *M. oleifera*.

<table>
<thead>
<tr>
<th>Sistema agroecológico</th>
<th>Sistema convencional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipomoea nil (L.) Roth Campanita azul</td>
<td>Cyperus sp.</td>
</tr>
<tr>
<td>Tripogandra serrulata (Vahl) Handlos</td>
<td>Aeschynomene americana L.</td>
</tr>
<tr>
<td>Senna occidentalis (L.) Link. Pico de pájaro</td>
<td>Crotalaria retusa L. Chischil</td>
</tr>
<tr>
<td>Senna pallida (Vahl) H.S. Irwin&Barneby</td>
<td>Sida spinosa L.</td>
</tr>
<tr>
<td>Senna obtusifolia (L.) H.S. Irwin&Barneby Hediondilla</td>
<td>Mimosa albida Humb. & Bonl. ex Willd. Zarza</td>
</tr>
<tr>
<td>Melanthera nivea (L.) Small Boton blanco</td>
<td>Paspalum sp.</td>
</tr>
<tr>
<td>Conyza laevigata (Rich.) Pruski.</td>
<td>Senna obtusifolia (L.) H.S. Irwin&Barneby Hediondilla</td>
</tr>
<tr>
<td>Cyperus sp.</td>
<td></td>
</tr>
<tr>
<td>Crotalaria retusa L. Chischil</td>
<td></td>
</tr>
<tr>
<td>Mimosa albida Humb. & Bonl. ex Willd. Zarza</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3. Orden, familias, y número de especies por familia y proporción por individuos de artrópodos en dos sistemas de manejo de *M. oleifera*, en la Universidad Nacional Agraria, Nicaragua.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Número de especies</th>
<th>Proporción por individuos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agroecológico</td>
</tr>
<tr>
<td>Amblypygi</td>
<td>Tarantulidae</td>
<td>1</td>
<td>8.30</td>
</tr>
<tr>
<td></td>
<td>Cerambycidae</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Scarabacidae</td>
<td>3</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Chrysomelidae</td>
<td>5</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>Bostrichidae</td>
<td>ENI</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Buprestidae</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Carabidae</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Cerambycidae</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Cicindelidae</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Curculionidae</td>
<td>1</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Dermestidae</td>
<td>ENI</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Nitidulidae</td>
<td>2</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td>Scarabacidae</td>
<td>3</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Tenebrionidae</td>
<td>2</td>
<td>2.15</td>
</tr>
<tr>
<td>Dermaptera</td>
<td>Formicidae</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>Diptera</td>
<td>Asilidae</td>
<td>1</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>Calliphonidae</td>
<td>1</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Dolichopodidae</td>
<td>1</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>Drosophilidae</td>
<td>1</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Muscidae</td>
<td>1</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Sarcophagidae</td>
<td>1</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Simullidae</td>
<td>ENI</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Stratiomyitidae</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Syrphidae</td>
<td>2</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Tabauidae</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Tachinidae</td>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Tipulidae</td>
<td>ENI</td>
<td>0.41</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>Alydidae</td>
<td>2</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td>Anthocoridida</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Cydnidae</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Lygacidae</td>
<td>2</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Miridae</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Pyrrchocoridae</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Pyrrchocoridae</td>
<td>Ninfa</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Reduviidae</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>Homoptera</td>
<td>Cercopidae</td>
<td>2</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Cicadellidae</td>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Membracidae</td>
<td>2</td>
<td>0.30</td>
</tr>
<tr>
<td>Clase</td>
<td>Subclase</td>
<td>Nombre científico</td>
<td>Nombre común</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>Eni</td>
<td>Chrysoperla externa</td>
<td>León de áfidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyalmenus sp.</td>
<td>Chinche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Musca domestica</td>
<td>Mosca casera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sohotelus sp.</td>
<td>Escarabajo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenopsis sp.</td>
<td>Hormiga</td>
</tr>
</tbody>
</table>

ENI: Especie No Identificada

Anexo 4. Lista de especies representativas, determinadas por número de individuos encontrados en los sistemas de manejo.
Bases teórico-metodológicas para el diseño de sistemas agroecológicos

Theoretical-methodological framework for the design of ecological agriculture systems

Álvaro Noguer-Talavera, Francisco Salmerón, Nadir Reyes-Sánchez.

Resumen

Este artículo resume una serie de experiencias que desde la aplicación de los principios agroecológicos permiten identificar y analizar definiciones, estructuras, dimensiones-escalas, métodos de evaluación de sistemas agroecológicos, con el objetivo de orientar el análisis hacia el entendimiento de los procesos que promueven una alta funcionalidad ecológica, social y económica. La construcción del marco teórico-metodológico presentado es resultado de una revisión de experiencias con enfoque agroecológico, en agroecosistemas estratégicos para la conservación de los recursos naturales. Los resultados de la revisión y análisis de las experiencias muestran que, en el contexto de la agricultura con enfoque de sostenibilidad, las prácticas agroecológicas han evolucionado producto de experiencias tradicionales acumuladas por productores individuales, asociaciones, y proyectos de desarrollo territorial; asumiendo diferentes escalas de aplicación y mecanismos. Con base en las dinámicas productivas con enfoque agroecológico, fue posible extraer y sintetizar de cada experiencia los indicadores de procesos funcionales como conservación de la biodiversidad, servicios ecosistémicos, productividad, conectividad del paisaje, para el logro de objetivos ecológicos, sociales y económicos, tanto a escala de finca como de cuenca, y paisaje. Es bajo esta premisa, que se planea que el análisis de sistemas agroecológicos a diferentes escalas, conlleva elementos metodológicos integradores de distintas visiones de la gestión de recursos naturales, debido a que su dinámica está determinada por elementos naturales y sociales con múltiples contextos.

Palabras claves

Agricultura sostenible • procesos ecológicos • evaluación agroecológica

Universidad Nacional Agraria. km 12 ½ Carretera Norte. Managua, Nicaragua. Apdo. 453. nogueratalavera@yahoo.es
ABSTRACT

This paper summarizes a range of experiences that when applied allow the identification and analysis of definitions, structures, dimensions-scales and key processes for the design of agro-ecological with the objective to drive the analyzes towards understanding of process that promote an important ecological, social and economic functionality. The theoretical framework-methodological built is provisions from agro ecological experiences review of agroecosystems that conserve natural resource. From the experiences analysis, it suggests that, in the context of sustainable agriculture, the agro ecological practices have evolved as a result of the local experiences of individual farmers and farmer's associations, and territorial development projects, with different territorial scale and strategist to the implementation. Based on productive activities on the agro ecological approach, was summarized indicators of functionality as well as, biodiversity conservation, ecosystem services, productivity, and ecological net at landscape, to reach ecological, social and economic objectives, in scales as farm, watershed, and landscape. It is under this premise that, we conclude that at varying degrees, these systems serve to integrate different approaches on the conservation of nature and human development thanks to the fact that their dynamic is determined by natural and social elements with multiple contexts.

Keywords
Sustainable agriculture • ecological process • ecological assessment

INTRODUCCIÓN

De acuerdo con Rusch y Skarpe (2009), en un contexto actual de la agricultura nica- raguense caracterizada por la existencia de suelos degradados, baja productividad por sistemas de manejo poco eficientes (10) y, factores climáticos y de degradación, no cabe duda sobre la necesidad de implementar métodos de agricultura que promuevan mayor biodiversidad, resiliencia y elementos para una sostenibilidad ecológica y social (3); y en la práctica, mayor producción de alimentos; concibiéndose así la necesidad de un nuevo paradigma o forma justa de agricultura (28).

Desde un punto de vista teórico-metodológico, el paradigma de agricultura justa debe partir de principios como: complejidad basada en funcionalidad, integración de los componentes de los agroecosistemas, mejor interacción hombre y ecosistema, y transformación continua; además de conceptos de la ciencia agroecológica como: sostenibilidad, adaptación, y productividad; todos importantes para el diseño y evaluación de sistemas de producción agropecuarios con enfoque de sostenibilidad.

La agroecología como ciencia transdisciplinaria y participativa (39), no es meramente un conjunto de recetas tecnológicas, sino que parte del empoderamiento de la familia campesina considerando su entorno ecológico, social y económico; muchas veces desventajoso por el predominante sistema de mercado. Esto hace a la agroecología una ciencia que se nutre de las experiencias campesinas (locales) exitosas que pueden ser traducidas en indicadores útiles para la difusión de prácticas agroecológicas exitosas.

El presente ensayo tiene como objetivo aportar elementos teóricos-metodológicos de reflexión para la aplicación en caracterización, estudio y comprensión de los procesos ecológicos que sugieren funcionalidad de los sistemas agroecológicos en diferentes realidades productivas, climáticas, y sociales; tomando como referencia experiencias desarrolladas a diferentes escalas y contextos.

Con el propósito de construir una secuencia lógica en el abordaje de la temática, el artículo ha sido organizado en siete secciones, iniciando con una Introducción, la cual ofrece una visión consensuada de las limitantes de tipo, ambientales y tecnológicas que justifican un cambio de paradigma en el modelo productivo local, contexto que es común a muchos territorios rurales de América Latina.

La sección titulada Fundamentos de agroecología aplicados a sistemas agrarios productivos, es una síntesis de las bases conceptuales sobre diseños agroecológicos. En esta sección, se propone una definición con visión integral de lo que se debería concebir
como diseño agroecológico a diferentes escalas; y se retoman los principios que, desde el origen epistemológico de la agroecología, se han considerado como base para el diseño de sistemas agroecológicos.

Los Materiales y Métodos presentan el procedimiento, y criterios utilizados para la obtención y análisis de la información; así como un esbozo de los aspectos experimentales y de diseño de una de las experiencias con carácter inédito.

La sección Casos de diseños y evaluación de sistemas agroecológicos, representa el desarrollo de la temática, a partir de estudios, en los cuales se aborda tres agrosistemas productivos estratégicos por su composición, integración y funcionalidad de los elementos que los integran; así como su importancia económica, social y cultural, desde un enfoque de sistema que es pertinente con el manejo sostenible.

En la sección denominada Los diseños agroecológicos y su distribución a escala superior a la finca, se hace una propuesta teórica y metodológica donde se aplican los principios de la sostenibilidad al análisis de una escala mayor a la finca. Aquí, la apuesta es conciliar y/o traslapar los principios de la agroecología con procesos a nivel de paisajes, territorios y cuenca, escalas que son, por su complejidad, poco entendidas al considerar perspectivas de la investigación y la evaluación agroecológica.

En la sección titulada Implicaciones de la evaluación de los sistemas agroecológicos se establece una ruta metodológica para la evaluación de los diseños agroecológicos, con visión de aplicación a diferentes escalas. La propuesta metodológica hace énfasis en métodos de tipo cualitativos y cuantitativos e implica desde el establecimiento de línea base, hasta elementos de rediseño, monitoreo y seguimiento, para generar pautas de las evaluaciones a nivel de sostenibilidad.

Las Conclusiones ofrecen los aspectos particulares asumidos de las generalizaciones teóricas extraídas de los estudios de caso; enfatizando en que los sistemas agroecológicos tienen diferentes expresiones, representan principios que conllevan elementos de sostenibilidad como son adaptación y resiliencia, así como de cosmovisión, cuyas dimensiones trascienden lo técnico y económico, características que determinan las opciones para su evaluación.

FUNDAMENTOS DE AGROECOLOGÍA APLICADOS A SISTEMAS AGRARIOS PRODUCTIVOS

La agroecología propone el desafío de asumir la complejidad de la naturaleza no como un recurso infinitamente explotable sino como un bien que hay que conservar y a la vez reproducir. La racionalidad de la familia campesina interpreta la complejidad de su entorno para diseñar sus sistemas de producción agroecológicos convirtiendo estas experiencias en conocimientos sistemáticos emergidos de una práctica exitosa de sistemas productivos de autosubsistencia, en conversión o plenamente agroecológicos.

Desde su fundamentación técnica, López (2012) resalta que la agroecología ofrece respuestas a la degradación ambiental, social y económica resultante de la prevaleciente agricultura moderna basada en la dependencia de agroquímicos, tecnología y energía fósil; es más, responde a la necesidad de incrementar los niveles de consumo de alimentos inocuos para la salud de los consumidores que a la larga afecta el nivel de vida y productividad de la población vulnerable de los países más empobrecidos.

La conceptualización de productividad asociada a los sistemas productivos con base agroecológica es analizada por Martínez (2002), desde dos dimensiones, la relativa a la manera como se usa el agroecosistema en espacio y tiempo (elementos bases para el diseño), y en términos de la fuerza laboral.

La primera dimensión reconocida, y aceptada como parte de la visión propuesta en este artículo tiene su expresión en procesos como diversificación y buen aprovechamiento de fuentes naturales de energía; mientras la segunda radica en producir a partir de una alta eficiencia de la mano de obra familiar y comunal reduciendo así el riesgo de comerciar con la fuerza laboral y; el despojo o pérdida de la tierra y, por tanto, la desaparición de la ruralidad. En la misma línea Vilaboa et al. (2006) visiona la productividad como la eficiencia biológica de un sistema de producción con expresión en la sostenibilidad del sistema.
El retorno a prácticas tradicionales campesinas basadas en saberes locales se justifica al reconocer que los agroecosistemas donde los productores manejan eficientemente la diversidad desde una perspectiva de función de cada componente, se transforman en sistemas agroalimentarios sostenibles que proveen en gran medida la producción de alimentos en muchas regiones de América; tomando como ejemplo lo planteado para Nicaragua por Salmerón y Valverde (2016), quienes dimensionan el aporte de pequeñas unidades productivas en un 50%.

Diversos análisis de la importancia de los sistemas tradicionales en la consecución de objetivos de sostenibilidad, entre los que destacan el desarrollado por Altieri y Nicholls (2012), quienes enfatizan en que muchos agroecólogos reconocen que los agroecosistemas basados en prácticas campesinas tienen el potencial para solucionar muchas incertidumbres que hoy en día enfrenta la humanidad, principalmente cambio climático, crisis financiera, e inseguridad alimentaria.

Aun cuando las prácticas y/o tecnologías campesinas son más reconocidas como amigables con el medio ambiente, en comparación a las de alto uso de insumos, no todas son efectivas o aplicables (3, 30), en parte por la visión de cada productor, y por otro lado, por diferencias edafoclimáticas entre zonas agroecológicas, y esta última de acuerdo con Machado et al. (2015), influyen en los indicadores técnicos-productivos, sociales y económicos; por lo que las modificaciones y adaptaciones podrían ser necesarias; proponiendo así a la agroecología como la clave para revitalizar la productividad de los sistemas de finca; y aún más a otras escalas espaciales como son la cuenca a la escala de territorio (28).

Desde el punto de vista de la academia, la estrategia para la sostenibilidad de los sistemas agroecológicos ha estado basada en la funcionalidad de los componentes; así diferentes autores visualizan la funcionalidad como la utilización real y coherente de los procesos (sinergias y antagonismos) y organismos vivos que participan en la planificación, producción y distribución de los beneficios del usufructo de la tierra como recurso natural.

Una vez que la agroecología es asumida como guía para incrementar la productividad de los pequeños sistemas de finca y sistemas de mayor escala; la reorientación de prácticas debe sustentarse en la aplicación de los principios de esta ciencia, cuya expresión puede ser conceptualizada como sistemas agroecológicos; constituidos por un conjunto de diseños o arreglos espaciales y temporales de componentes, son dinámicos y pueden tomar diferentes formas tecnológicas dependientes de circunstancias biofísicas, socioeconómicas, e intereses de cada productor (3).

Bajo una lógica de sostenibilidad los sistemas agroecológicos deben ser manejados a través de la aplicación de los principios de la ciencia agroecología, estos deben mostrar atributos como altos niveles de diversidad funcional, integración, eficiencia y resiliencia; mientras otros autores resaltan otros atributos de corte socio cultural como autosuficiencia alimentaria, autonomía e independencia; y aún más complejos, desarrollo endógeno y local (26, 27, 43).

Elementos conceptuales sobre diseños agroecológicos

El entendimiento de la dimensión de los diseños agroecológicos abordada en este artículo, debe partir del entendimiento del enfoque conceptual de agroecosistema, fundamentado por el paradigma de pensamiento complejo, cuya aplicación parte de la teoría de sistemas complejos en los que la realidad agrícola es representada por una totalidad organizada que no puede ser estudiada aisladamente (6).

De acuerdo con Casanova-Pérez et al. (2005), agroecosistema es un sistema complejo, abierto (realiza intercambios con el medio), constituido por elementos heterogéneos en interacción, con interdefinibilidad, mutua dependencia de las funciones que cumplen los elementos, clausura operativa para garantizar su autoreproductividad, y acoplamiento estructural; mientras desde un enfoque autopoiético representan estructuras (subsistemas) sociales de comunicación que expresan visiones de manejo agrícola, emergentes de la agricultura como sistema social (figura 1, pág. 277).

Partiendo del enfoque multidisciplinario de la agroecología es de particular interés para investigadores, técnicos, productores y decisoros el abordaje conceptual y práctico de la integración de diferentes ejes en el marco del diseño de sistemas agroecológicos (figura 1, pág 277).
En la búsqueda por reinstalar una racionalidad más ecológica en la producción agrícola, los científicos y promotores han ignorado un aspecto esencial o central en el desarrollo de una agricultura más autosuficiente y sustentable: un entendimiento más profundo de la naturaleza de los agroecosistemas y de los principios por los cuales estos funcionan. Dada esta limitación, la agroecología emerge como una disciplina que provee los principios ecológicos básicos sobre cómo estudiar, diseñar y manejar agroecosistemas que son productivos y a su vez conservadores de los recursos naturales y que, además, son culturalmente sensibles; y social y económicamente viables (36).

De más pragmático entendimiento, es lo referido por Vásquet et al. (2012), quienes definen teóricamente los diseños agroecológicos como sistemas de diferentes escalas (organopónicos, huertos intensivos, patios, parcelas y fincas típicas, hasta los límites de cuenca y paisaje) que se originan de actividades de planificación y manejo espacial, estructural y temporal de la vegetación, cultivada o no; siendo los elementos esenciales en el manejo, los tipos de biodiversidad.

Desde una perspectiva práctica, es posible conceptualizar los diseños agroecológicos como herramientas o instrumentos de planeación para el manejo de la producción agrícola sostenible con principios agroecológicos (36); resaltando la importancia de la planificación del diseño y la eficiencia del sistema a partir de lo propuesto por Souza-Casadinho (2010), en cuanto a procesos como la demanda externa de energía asociada al logro de un eficiente reciclaje de nutrientes y el manejo de plagas. Complementariamente, la distribución espacial y temporal de los cultivos con expresión en el índice de presión secuencial de familias en el arreglo, compatibilidad entre componentes, entre otros.

En el diseño y manejo de sistemas de producción, se debe considerar que en su estructura espacial y temporal se favorezcan varios niveles principales en las interacciones funcionales entre los cultivos y el resto de la vegetación (46), debiéndose además reconocer que los agroecosistemas en sí mismos poseen estructura y functionalidad ecológica, que pueden estar o no vinculadas con la estructura ecológica del paisaje en que se encuentran (23), debiendo modelo la complejidad de los sistemas naturales que los constituyen.

Figura 1. Elementos conceptuales y dimensiones de los diseños agroecológicos como estrategias interdisciplinarias.

Figure 1. Conceptual elements and scope of agroecological design as interdisciplinary strategies.
El objetivo último del diseño agroecológico es integrar los componentes de manera tal de aumentar la eficiencia biológica general, y mantener la capacidad productiva y autosuficiencia del agroecosistema (36).

En su abordaje, los diseños agroecológicos deben definirse desde una perspectiva tridimensional, es decir, mirar el sistema productivo, la finca y el entorno ambiental (mercado, políticas, instituciones, tecnología, asistencia técnica, entre otros factores), como un todo y no separado de su realidad: enfoque sistémico (36).

Como práctica, el diseño agroecológico de los sistemas productivos, así como las actividades a implementar dependen de la disponibilidad de recursos, de las limitaciones ambientales, de las restricciones que imponga el mercado y de las preferencias y valores del productor. En la etapa del diseño cada productor piensa y propone de qué manera, y a partir de sus necesidades específicas integrará los diferentes elementos del sistema (42).

El límite mínimo del diseño agroecológico es el sistema finca y no el sistema productivo, o la parcela. A partir de la finca, se construyen los diseños y el sistema productivo va a depender de la estructura ecológica de la finca (principio de inmunidad: anticiparse al cambio).

Los principios generales que se deben considerar para que un diseño productivo sea considerado con enfoque agroecológico han sido ampliamente abordados y profundizados por diversos autores (1, 14, 46), por lo que a continuación se enlistan algunos aspectos de los comúnmente resaltados.

- Incorporación de diferentes tipos de biodiversidad, garantizando la integración de componentes; y con ello el desarrollo de procesos ecológicos que hacen estable el agroecosistema.
- Eficiencia en la integración de los componentes del agroecosistema, a partir de diferentes tamaños y formas de campos; y una estructura de cultivos según los intereses de la familia campesina.
- Mejoramiento de la salud del suelo como estrategia para incrementar la productividad.
- Promoción de la seguridad y soberanía alimentaria de la familia campesina y las poblaciones de su entorno.
- Incremento de la productividad del sistema agroecológico, a partir de incremento en la eficiencia de los procesos ecológicos asociados al microclima, provisión de agua y diversidad biológica del suelo.
- Promoción de relaciones de equidad en la distribución de los beneficios, a través del fortalecimiento de la organización local e intercambio de saberes para el desarrollo.

Metodológicamente, la conjunción de los principios aplicados a los sistemas productivos es de interés estratégico como parte de evaluaciones de metas de la agroecología como ciencia y práctica local en vista que, por un lado, los principios orientan hacia el logro de sistemas respetuosos y promotores de la conservación de la biodiversidad; y por tanto productivos.

Autores como Altieri (2009) resaltaron la importancia del componente humano o social dentro de la dinámica de los agroecosistemas, encontrando en esta conjunción una aproximación al enfoque de sostenibilidad, cuyos elementos son transversales en políticas de desarrollo humano, entre ellos resiliencia, seguridad alimentaria, valoración de saberes locales, cultura agraria, integración familiar; y en general cohesión social (figura 1, pág. 277).

El enfoque sociocultural o humano en el diseño de sistemas agroecológicos

Desde lo social o humano de las familias campesinas, la decisión sobre el sistema agroecológico y su diseño-manejo está influenciada por una serie de factores de alguna manera olvidados por científicos e instituciones de investigación que promueven la adopción de tecnologías agrícolas convencionales. Siendo algunos de los factores aglutinados y resumidos en el concepto “cultura”, que en la práctica reemplaza conceptos energéticos o materialistas para definir su nicho como mecanismo de adaptación, incluyendo según León-Sicard (2009), expresiones que van desde lo mitológico, religioso hasta lo científico, expresiones artísticas, diferentes tipos de organización socioeconómicas y políticas; construidas a través de su historia de modificación del hábitat. Mientras Altieri (2009) realizó un abordaje basado en un proceso de coevaluación socio-ecológica.
Un principio organizador general, esencial en el enfoque campesino ante la producción es el mantenimiento de un conjunto de estrategias en la reproducción de diversidad de la vida. El campesino trabaja con esa diversidad de vida, y el objetivo central de su sistema de producción es la utilización de lo que encuentra naturalmente en su lugar, en el ecosistema que habita (37). Sustentando lo anterior, la afirmación que la agroecología no es un conjunto de técnicas, sino que se trata de poner a la familia rural en el centro del sistema productivo llegando a su empoderamiento para tomar decisiones sobre los medios de vida.

Desde la agroecología, las expresiones asociadas a una cultura agraria se basan en el conocimiento originado en las experiencias o comprensión de las limitantes y potencialidades del hábitat donde cada familia campesina desarrolla actividades productivas (46); así como la visión de sostenibilidad, que en caso de la agricultura de mercado se orienta de acuerdo con León-Sicard (2009) y Gudiño (2018), hacia el desarrollo económico, mientras en el pensamiento agroecológico se orienta hacia la buena relación entre ecosistema y cultura, a través de un verdadero bienestar común y equidad social.

Otro punto de vista de la importancia de la familia en la dinámica de los agroecosistemas está asociado al límite de estos, en vista que sus límites biofísicos son visibles; por el contrario, el límite social, económico o político es difícil de identificar puesto que está mediado por factores decisionales intangibles en estrecha relación con la cultura del productor y aspectos institucionales, y externos de otra índole que reflejan estrategias nacionales e internacionales de desarrollo (15, 22, 44).

La importancia de las personas en el diseño y manejo de sistemas agroecológicos, es también abordado a escala de paisaje, en el sentido que, la complejidad de la distribución espacial de los ecosistemas para su manejo y conservación dependen del grado de conexión entre la naturaleza y las poblaciones que bajo diferentes visiones transforman el medio (23).

El diagrama presentado a continuación (figura 2) resume aspectos conceptuales del enfoque sociocultural aplicados a la dinámica del diseño de sistemas agroecológicos ya que se ubica a la familia campesina en el centro del sistema, resaltando así el nivel de decisión que tiene esta en la planificación, implementación; y en general, la valoración de la viabilidad y sostenibilidad del sistema.

Figura 2. Enfoque sociocultural en la implementación de sistemas agroecológicos.
Autoría propia.

Figure 2. Social and culture framework on the implementation of agroecological systems.
Own authorship.
Como parte de la dinámica puesta en perspectiva en el párrafo anterior, se debe considerar como fuente de planificación y manejo del sistema la experiencia acumulada por la familia campesina lo cual, traducido a conocimiento, representa una entrada que propicia procesos de selección de componentes del sistema, como por ejemplo: granos, pastos, árboles, frutales, hortalizas y animales entre otros.

Por parte de la familia, el manejo de la interacción entre el suelo y el agua en relación con otras fuentes de energía como la lluvia, el sol y el viento, el reciclaje de nutrientes a través de la materia orgánica acumulada tanto de los productores primarios, como de los consumidores para hacer más eficiente el aprovechamiento de la energía.

Desde la visión de desarrollo, la familia establece sus mecanismos de administración tanto para suplir sus necesidades alimentarias, de educación y superación para alcanzar cierto nivel de bienestar o calidad de vida (5); como para identificar oportunidades de mejoramiento del sistema, a partir de intercambios con otras familias y comunidades, colaboraciones, inserción a mercados locales; y otros bienes y servicios que mejoran su independencia de materia prima o servicios de agentes e instituciones especializadas y condicionantes del tipo de sistema de producción, como es el caso de instancias promotoras de agricultura convencional.

Lo antes descrito tiene su base en la importancia que la familia campesina asigna al conocimiento de su realidad y visiones de desarrollo; visiones que “están enraizadas en sus lugares físicos, lo que los equipa con un tipo de conocimiento involucrado y participativo, en vez del conocimiento desapegado y remoto que resulta de la práctica científica de la agricultura industrial; se centra además en los intereses de la comunidad local y su meta es producir alimentos tras el logro de la auto-dependencia y la estabilidad en el largo plazo” (37).

Materiales y Métodos

Para la obtención de la información de utilidad para la construcción de los elementos teóricos y metodológicos que persigue el objetivo del artículo, se realizó una revisión analítica de publicaciones cuyos criterios de selección fueron:

1) Evidente aplicación de principios agroecológicos, como son: Incorporación de diferentes tipos de biodiversidad, eficiencia en la integración de los componentes, incremento de la productividad del agroecosistema, protección de los procesos ecológicos a nivel de cuenca y paisaje.

2) Utilización de indicadores pertinentes al análisis y evaluación agroecológico, permitiendo identificar y resaltar procesos ecosistémicos relacionados con lo ecológico, social y económico. Siendo algunos de ellos: estabilidad de la biodiversidad, salud del suelo, independencia de insumos externos, integración familiar, conectividad del paisaje, capacidad de organización social, seguridad alimentaria, entre otros.

3) Que fuesen experiencias de América Latina, debido, principalmente, a la similitud en la aplicación de prácticas tradiciones en diseños, y rediseño de los agroecosistemas.

Con excepción del caso del modelo de manejo agroecológico de moringa, que es un trabajo inédito por ser resultados de tesis doctoral, en ninguno de los casos de revisión, se procesó o analizó datos crudos de las publicaciones. El método consistió en la elaboración de síntesis, por paráfrasis, de los aspectos metodológicos y resultados para presentarlos como indicadores de procesos y/o funcionalidad de las prácticas asociadas a diseños agroecológicos.

Los sistemas en los cuales se basó la revisión presentan, de manera intrínseca, elementos estructurales y funcionales que garantizan el logro de objetivos, alrededor de la conservación de los recursos naturales, por lo que, al no ser percibidos como estratégicos desde el enfoque de la agroecología, se agrava la degradación desde el nivel de finca hasta el nivel de paisaje.

Por ejemplo, la caficultura y ganadería, al ser actividades que generan importantes ingresos a los productores, en comparación con otros rubros, muestran una alta demanda de tierras e insumos que generan externalidades negativas a gran escala. Mientras que bajo el
enfoque de producción agroecológica, se mantendría su impacto sobre el ingreso, mediante las tradicionales prácticas de diversificación del sistema, así como la implementación de alternativas asociadas a la obtención de suelos saludables, canales justos de comercialización, independencia de insumos por integración de los componentes del sistema.

En el caso de las escalas cuenca, paisaje y territorio, es de interés para resaltar elementos como el mantenimiento de la conectividad ecológica y servicios ambientales entre ecosistemas, y enfoque de planificación territorial que permite dimensionar la interacción de las poblaciones humanas y ecosistemas. Al respecto, se asumen como elementos integradores los parches de bosques naturales, áreas protegidas y el agua como eje integrador en la cuenca.

METODOLOGÍA DEL ENSAYO DE MANEJO AGROECOLÓGICO DE MORINGA EN NICARAGUA

Los ensayos fueron establecidos en la unidad productiva finca Santa Rosa, cuya ubicación geográfica es 12º09’30.65”N, 86º10’06.32”W, y a una altitud de 50 m s.n.m. perteneciente a la Universidad Nacional Agraria, en Managua.

Climáticamente, el área pertenece a una zona de vida de bosque seco tropical, con precipitación y temperatura media anual de 1099 mm y 27°C respectivamente, y humedad relativa de 74%; predominando dos estaciones definidas por una época seca que va desde noviembre a abril, y una época lluviosa de mayo a octubre.

El ensayo tuvo una duración de nueve meses, con fecha de establecimiento junio 2013 hasta marzo del 2016 tiempo durante el cual se aplicó prácticas de manejo agroecológico. El área con manejo agroecológico correspondió a un lote de 1 hectárea, con un área efectiva de muestreo de 0,18 hectáreas. En el sistema fueron delimitadas cuatro unidades de muestreo de forma rectangular (15 m x 30 m).

El método definido para muestrear la macrofauna edáfica fue sistemático con monolitos separados 15 m entre sí, distribuidos en transecto diagonal dentro de las unidades de muestreo. Mientras el muestreo de artrópodos, se hizo mediante trampas pitfall y trampas aéreas.

Diseño experimental

El diseño consistió en unidades experimentales de forma rectangular, seleccionadas de manera aleatoria (DCA). Cada unidad con plantas establecidas a distanciamiento 3 m x 3 m, en arreglo lineal.

Tratamientos

Tratamiento 1: Manejo convencional, consistió en área de monocultivo de moringa, con actividades de preparación mecanizada del suelo, control mecanizado y químico de arvenses; fertilización inorgánica, y riego.

Tratamiento 2: Conversión agroecológica, cuyo enfoque fue el establecimiento de un sistema de policultivo, labranza mínima en la preparación del suelo, rotación de leguminosas, fertilización orgánica con compost, incorporación de abonos verdes, sin riego y, control de arvenses con cobertura de leguminosas.

Para la evaluación de los sistemas de manejo, del conjunto de monolitos se colectó dos muestras compuestas de 2 kilogramos de suelo, para determinar propiedades químicas y físicas en el Laboratorio de Suelos y Agua (LABSA) de la Universidad Nacional Agraria (tabla 1, pág. 282).

Procesamiento estadístico

La estadística no paramétrica (Kruskal-Wallis) fue empleada para determinar diferencias en la variación de la densidad por taxón y grupo funcional por sistema de manejo. Como parte de la diversidad de la macrofauna, a nivel de sistema de manejo para los taxones, clases y órdenes, se determinó el índice de dominancia de la comunidad (D), con comparaciones de “t” student en el programa PAST versión 1.29.
Tabla 1. Propiedades químicas del suelo de dos sistemas productivos de *M. oleifera* en la zona seca de Nicaragua.

Table 1. Soil chemicals properties in two productive systems of *M. oleifera* at dry zone of Nicaragua.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,54</td>
<td>7,45</td>
<td>6,58</td>
<td>7,08</td>
</tr>
<tr>
<td>M.O (%)</td>
<td>3,11</td>
<td>2,58</td>
<td>4,40</td>
<td>3,20</td>
</tr>
<tr>
<td>C.O (%)</td>
<td>1,29</td>
<td>1,71</td>
<td>1,68</td>
<td>2,18</td>
</tr>
<tr>
<td>N (%)</td>
<td>0,14</td>
<td>0,11</td>
<td>0,16</td>
<td>0,18</td>
</tr>
<tr>
<td>P (ppm)</td>
<td>35,70</td>
<td>20,17</td>
<td>ND</td>
<td>38,47</td>
</tr>
<tr>
<td>CIC</td>
<td>33,25</td>
<td>27,67</td>
<td>27,10</td>
<td>28,05</td>
</tr>
</tbody>
</table>

ND: No Determinado/UD: Non Determined.

DESGRANAMIENTO: CASOS DE DISEÑOS Y EVALUACIÓN DE SISTEMAS AGROECOLÓGICOS

modelo de manejo agroecológico de moringa en Nicaragua

Uno de los primeros ejemplos mostrados en este artículo corresponde a un sistema agroecológico de marango (*Moringa oleifera* Lam.). El modelo de diseño agroecológico propuesto partió de la noción de productividad promovida desde la agroecología, la que básicamente se fundamenta en la forma de utilización de la tierra, que a todas luces conlleva a la implementación de prácticas que mejoran la salud del suelo y los procesos que suceden y dependen de este recurso.

Las mediciones estuvieron orientadas a la documentación de la composición, estructura y funcionalidad de cada componente, clasificándolos a partir de los tipos de biodiversidad, los que permitieron estimar la complejidad del sistema (45).

La influencia de las prácticas de manejo agroecológico y las tendencias en cuanto a estabilidad, biodiversidad y características químicas del suelo en el proceso de transición fue determinada por comparación con un sistema manejado de manera convencional.

Desde la base conceptual del proceso de conversión de sistemas manejados convencionalmente a sistemas agroecológicos, se estableció la ruta de transición que estuvo marcada por la sustitución de insumos inorgánicos (fertilizante completo, urea, cipermetrina para control de insectos; y glifosato y 2,4-D para el control de arvenses) a aplicación de compost, inclusión de leguminosas, y cobertura de estas como abono verde. Siendo la diversificación a través de policultivo, prácticas de rotación en el tiempo, y establecimiento de hábitat para biodiversidad funcional y biodiversidad auxiliar como actividades de rediseño del sistema.

La fase de rediseño fue considerada de carácter transversal en el proceso (tiempo) de manejo, bajo el principio de la *transformation continua* donde la manipulación de la estructura y diversidad de componentes promovió eficiencia para finalmente lograr estabilidad (con expresión en la diversidad de macrofauna del suelo y artrópodos) en el sistema, y cierto nivel en el manejo de las interacciones con miras a incrementar la diversidad, productividad y resiliencia.

Las interacciones promovidas estuvieron dirigidas al mejoramiento de la fertilidad y salud del suelo mediante el incremento de la diversidad de macrofauna por mayor calidad de la biomasa, y fertilización orgánica. Así mismo se promovió la diversidad de polinizadores y controladores biológicos (arañas) mediante el mantenimiento de corredores de arvenses, la eliminación de control mecanizado y químico de estas y entomofauna (figura 3, pág. 283).

Mediante este modelo agroecológico se diversificó las salidas tangibles del sistema que, a diferencia de únicamente semillas de moringa como producto de comercialización en un sistema convencional o monocultivo, proporcionó forraje y granos para la familia, para ganado bovino y ganado menor; y aún más importante desde la agroecología, se promovió servicios ambientales como conservación de biodiversidad, mejoramiento del suelo y posibilidades de adaptación a variabilidad climática.
La evaluación del efecto de las prácticas sobre las características químicas del suelo sugiere mayor calidad de este recurso en conversión agroecológica, mostrando de esta manera la tendencia del proceso expresada en características importantes como contenido de materia orgánica, carbono orgánico, nitrógeno y fósforo disponible; elementos que son esenciales para el sostenimiento de la biología del suelo y los rendimientos de cultivos (tabla 1, pág 282) (9).

Los cambios experimentados por el sistema bajo conversión agroecológica se identificaron también a nivel de la macrofauna edáfica, observándose en la composición taxonómica, con predominancia de Arthropoda, alta densidad de organismos en la profundidad 0 a 10 cm; valores de diversidad (D=0,43, J=1,0) y grupos funcionales mayormente modificadores del suelo. Las diferencias fundamentadas. Se encontraron en el origen del sistema, contenido de materia orgánica por diversificación, y prácticas de fertilización; pudiendo determinarse asociación entre la macrofauna del suelo y los organismos que interactúan con M. oleifera (33).

La composición de artrópodos en conversión agroecológica mostró mayor estabilidad (reflejada en los valores de diversidad) en los tres años de evaluación, en comparación con el manejo convencional. La proporción de fitófagos versus enemigos naturales y con potencial benéfico, registró un mejor balance en conversión agroecológica (48,2% fitófagos vs 45,4% entomofauna benéfica), en comparación con el sistema convencional (52,1% fitófagos vs 40,3% entomofauna benéfica).

Como resultado de la diversificación del sistema, el mantenimiento de corredores con arvenses y las características fenológicas de especies en conversión agroecológica se incrementó la diversidad de polinizadores de las familias Vespidae y Apidae. Díaz-Torres (2001) resalta el importante rol que juega este grupo desde el punto de vista del mantenimiento de la diversidad genética de cultivos, y el efecto de control por entomofagos que ejercen sobre algunos insectos.

La presencia de cercas vivas y corredores de arvenses permitieron la presencia de depredadores como arañas de la familia Saltisidae, y la especie Tansless whipscorpions, reconocidos controladores de larvas e insectos.

Mediante análisis de adyacencia se determinó alta similitud de especies de artrópodos entre el área de conversión agroecológica y los hábitats adyacentes al sistema convencional demostrándose el efecto de las prácticas de manejo sobre la biodiversidad en los cultivos.
El rendimiento del cultivo principal (*M. oleifera*) fue ligeramente inferior en conversión agroecológica (72 kg/ha) solamente el primer año de cosecha, en comparación a 76 kg/ha en el sistema convencional. La diferencia se asocia a baja compatibilidad de moringa con *C. brasiliensis*, presentando valores superiores en los subsiguientes dos años, con 105,8 kg/ha en conversión agroecológica y 100,6 kg/ha en manejo convencional.

Otros beneficios del sistema agroecológico se refieren al rendimiento de las leguminosas en el asoció con moringa, las que resumen los siguientes valores: *Canavalia ensiformis* (2 t/MS/ha, y 68 kg/ha en semilla), *Canavalia brasiliensis* (2,6 t/MS/ha, y 35 kg/ha en semilla) *Cajanus cajan* (4 t/MS/ha) y *Vigna unguiculata* 364 kg/ha en semilla). De estos resultados es posible inferir un mejoramiento en el potencial de adaptación de productores de la zona seca a los efectos de variabilidad climática, tanto por las especies en el asoció con moringa, como por la diversificación en las opciones productivas o productos que se obtienen del sistema.

El carácter experimental de este ensayo, circunscrito a una unidad productiva de la Universidad Nacional Agraria, así como la evaluación enfocada principalmente a la determinación del efecto de las prácticas sobre parámetros biológicos-ambientales, limitó la documentación de aspectos socio culturales asociados al diseño y rediseño del sistema, y la toma de decisión de productores sobre dichos aspectos.

La poca tradicionalidad y/o experiencias nacionales en la producción de este cultivo, es uno de los factores que justifican su estudio bajo un modelo de agricultura sostenible, máxime porque recientemente está siendo considerado un cultivo industrializable, y prome nente frente a condiciones de alta variabilidad climática en el corredor seco nicaragüense.

En la actualidad, a pesar de la existencia de una estrategia nacional para la producción, consumo y comercio de moringa, la producción de este cultivo es común entre pocos empresarios que controlan la cadena productiva, debido principalmente a su capacidad de garantizar capital monetario para la continuidad de la asistencia técnica, innovaciones en el manejo y transformación del cultivo y productos, y posibilidades de incursionar en mercados poco explorados por pequeños productores.

Los resultados del trabajo presentado en esta sección, demuestran la factibilidad de promover la inclusión de moringa en diseños agroecológicos, debido a su viabilidad bajo un esquema de producción de bajos insumos y manejo de las interacciones; permitiendo mantener la productividad del sistema, en comparación con el manejo convencional, y generar productos y servicios ecosistémicos complementarios. Es bajo este modelo que, pequeños productores agroecológicos de la zona seca de Nicaragua, pudiesen explorar mercados que premian producción inocua y con pocas externalidades ambientales negativas.

Sistemas agroecológicos con café como cultivo principal

En la realidad nicaragüense el sistema café con sombra es frecuente a diferentes escalas. Sin embargo, desde el enfoque de la agroecología, su concepción como sistema agroecológico no se logra solamente al incorporar y/o mantener una alta diversidad de árboles y por tanto cobertura; sino que bajo los principios agroecológicos se deben fortalecer procesos ecológicos como el reciclaje de nutrientes y del agua, flujos de energía, y los mecanismos de regulación de poblaciones de organismos benéficos y nocivos.

La estrategia práctica para promover los diferentes procesos en el manejo de sistemas agroecológicos café con sombra es la regulación de la sombra. Este sistema se presenta bajo diferentes diseños cuyo arreglo en el tiempo involucra el cultivo de ciertas especies para sombra temporal en etapas iniciales del establecimiento del cultivo y otras para sombra permanente; mientras el arreglo espacial involucra la densidad de árboles y por tanto de la sombra; que en muchos casos varía entre 40% y 50% (27).

Resultados de una evaluación socioeconómica y ambiental en el trópico seco nicaragüense confirman una teoría de valoración superficial de los procesos ecológicos en sistemas de café con sombra, como agroecosistema, con principios agroecológicos en su manejo (29).

En el trabajo, los autores refieren únicamente, la sombra, disminución de la erosión y división de fincas, como principales beneficios del sistema; sin profundizar en las implicaciones del logro de estos servicios. Una fuerte tendencia sobre el análisis de la funcionalidad del componente arbóreo en cafetales, ha sido hacia la documentación de usos como
beneficios tangibles (madera, leña, frutos, entre otros) más que la identificación y/o estimación de servicios ambientales; siendo la excepción trabajos enfocados a la obtención de certificación de producción orgánica.

Al respecto, Morán et al. (2014) cuantificaron un menor beneficio por ingreso económico de los productores con sistemas de café con sombra, al comparar dicho indicador con los obtenidos por productores con otros sistemas como silvopastoriles y manejo de bosque con regeneración natural, siendo la causa común de este resultado, poca asistencia técnica para el continuo mejoramiento y/o rediseño del sistema, baja integración familiar, y cierta marginalidad de las unidades productivas.

Esta experiencia da cuenta de que “En Nicaragua, la crisis de la caficultura ha tenido efectos negativos múltiples. Las familias productoras de pequeña escala han perdido una parte importante de su ingreso vía el precio del producto, y las opciones de empleo se han reducido notablemente en las fincas grandes. La crisis del sector queda de manifiesto en la quiebra de muchos productores” (29). Es producto de esta condición, que algunos pequeños caficultores, han tenido que transit hacia un modelo de producción con principios de agroecología, convirtiéndose en referencia o faros agroecológicos.

En una sistematización de experiencias sobre manejo agroecológico en Chiapas-México, es posible hacer un abordaje de la tradicionalidad y visión agroecológica de los productores de café a pequeña escala, quienes han desarrollado sistemas agroecológicos complejos que incluyen el cultivo de café intercalado con frutales y árboles leguminosos de sombra.

Como efecto benéfico, la erosión es controlada mediante terrazas y una capa protectora de mulch formada por la acumulación de hojarasca. Al observar que la retención de hojarasca reduce la pérdida de suelo de la capa superficial, muchos agricultores construyen terrazas con cercas vivas de arbustos para retenerla. Comúnmente los agricultores tienen un conocimiento detallado sobre los beneficios de las hojas de distintas formas y tamaños y sobre lo que aporta cada una a la preservación de la capa superior del suelo cuando actúa dentro de la capa protectora de mulch (18).

En relación con la caracterización de elementos de sostenibilidad de agroecosistemas cuya base es el cultivo de café en la cordillera central de los Andes. Machado et al. (2015) presenta una propuesta metodológica basada en tres dimensiones, siendo la primera la económica cuyos atributos principales fueron: seguridad alimentaria expresada no solo en la producción de alimentos en el agroecosistema, sino también en acceso a centros de distribución de alimentos por comercialización de otros bienes provenientes del sistema; además bajo riesgo económico relacionado con alta diversidad de cultivos e independencia de insumos.

Los resultados de la caracterización en cuestión sugieren una alta condición de seguridad alimentaria por el grado de diversificación tanto de cultivos (café, cacao, caña de azúcar, plátano y frutales), como de animales (aves y peces) de los sistemas; un buen equilibrio de la productividad y bajo riesgo económico, aun con bajos rendimientos del café; otros con economía basada en la producción de café y un único canal de comercialización fueron clasificados en riesgo económico.

La segunda dimensión abordada es la técnico-productiva, vinculada con la gestión de la capacidad biológica del suelo para sustentar la salud del cultivo como estrategia para incrementar la productividad del sistema. En cuanto a la salud del cultivo se enfatizó en la diversidad genética (se reporta alta frecuencia de tres variedades de café) y especies cultivadas, así como la existencia de vegetación circundante como fragmentos de bosques, cercas vivas, campos agrícolas, pastizales con árboles, entre otros; componentes estos que garantizaron un ensamblaje integral y funcionalidad de la biodiversidad.

La mayor calidad del suelo y salud del cultivo fueron registrados en los cafetales con alta asociación de cultivos, uso de abonos verdes y alta diversidad genética.

La tercera dimensión, y no menos importante fue la dimensión social, la que se centró en los indicadores tenencia de la tierra como elemento de aseguramiento de reproducción social de la familia campesina; y en la misma línea la capacidad de construcción de redes o tejidos sociales propiciados por la actividad productiva, y cuyas ventajas derivaron en la adquisición de mano de obra, intercambio de experiencia con fines de innovación y mejoras hacia el sistema, servicios, entre otros.
Desde el punto de vista de la tenencia de la tierra, la legalidad facilitó el acceso a fuentes de crédito; mientras el indicador asociado a la existencia de redes sociales demostró el valor de la parentela o el aporte del trabajo en familia para la construcción de entes comunitarios claves en la intensificación de mecanismos de reciprocidad, colaboración, resiliencia social y apoyo institucional.

Coherente con las dimensiones analizadas en el caso anterior, Vilaboa et al. (2006) proponen un enfoque metodológico para el estudio profundo de las opciones sostenibles en la caficultura; inclinándose por el "enfoque de medios de vida", que en sus fines permite reconocer las necesidades del sistema de producción, la definición de alternativas y la adaptación de tecnologías para el diseño e implementación de los planes de finca.

Los autores Tonolli (en prensa) y Vilaboa et al. (2006), resaltaron indicadores asociados a elementos de sostenibilidad en lo socioeconómico como lo son: salud, seguridad alimentaria, racionalidad campesina, paquetes tecnológicos adecuados a la realidad local, acceso a mercados entre otros (21).

Con base en el enfoque de medios de vida, Villanueva et al. (2011) establecieron los lineamientos que desde la racionalidad campesina han sido comunes a sistemas de café con visión de sostenibilidad; contando entre dichos lineamientos: la diversificación de la finca para mejorar las opciones de ingreso familiar; fortalecimiento de las bases biológica-ecológicas para lograr la funcionalidad de los componentes del ecosistema, incrementar la integración familiar para el mejoramiento de la productividad en términos de agroecología, la incorporación de la valoración de servicios ambientales, que incrementen el capital natural de las unidades productivas.

Los sistemas silvopastoriles como base para una ganadería sostenible

Los sistemas silvopastoriles (SSP) son sistemas agroforestales diseñados y manejados para la producción de árboles y de sus productos, como el forraje para el ganado, mediante el cual los árboles y la pastura se manejan como un sistema integrado (40); siendo el grado de integración uno de los atributos que acerca este tipo de sistema de uso de la tierra a enfoques como la agroecología.

Como parte de una visión de sistema, Murgueitio et al. (2014) proponen un modelo ganadero productivo denominado sistemas silvopastoriles intensivos (SSPi), en los cuales, la visión de sostenibilidad se fundamenta mediante una **intensificación con generación de servicios ambientales** en el manejo de los elementos de los paisajes ganaderos, y en cuya configuración, predominan en forma simultánea bosques nativos para conservación, humedales, sabanas naturales, áreas en sucesión vegetal, cercas vivas, bancos forrajeros, pastoreo en plantaciones, entre otros; siendo la configuración de la matriz del paisaje el factor clave para lograr la intensificación (30).

En los SSP, el ganado es un componente fundamental; por ello es necesario desde la perspectiva agroecológica comprender los efectos del pastoreo sobre la composición y la función del sistema y los mecanismos por los cuales se producen cambios. La evidencia acumulada por la ecología sobre las relaciones entre los herbívoros y la vegetación constituye un marco de referencia teórico sólido para entender los principios fundamentales de los efectos de los herbívoros sobre los procesos del ecosistema a distintos niveles y, en particular, sobre la vegetación a nivel de la planta individual, de las poblaciones y de las comunidades de especies (40).

El análisis de los diseños agroecológicos basados en sistemas agroforestales para alimentación animal puede complejizarse en la medida que el flujo de energía en el sistema sea visualizado como indicador de eficiencia y sostenibilidad; como aspectos complementarios a las interacciones de componentes en el sistema.

La ganadería ecológica es una alternativa pecuaria, más respetuosa, con objetivos de sostenibilidad donde la calidad del producto y su inocuidad, el respeto a la salud pública, al bienestar animal, sus razas autóctonas y medio ambiente es lo más importante (13). Se sugiere la necesidad de reconocer que dentro de las prácticas promovidas está la utilización de especies o razas adaptadas que favorecen la productividad del sistema (31); complementariamente la mejora en el agrosilvosistema anula la contaminación ambiental, recupera la eficiencia de los ciclos de materia orgánica e inorgánica, dinamiza los flujos de energía y optimiza el biodinamismo de los suelos y reduce la erosión.
Casos referenciados en la literatura, identificaron los elementos asociados a diseños o modelos de producción pecuaria estrechamente vinculados a la agroecología (16, 48) entre los estratégicos se destacan:

- Diversificación de componentes en el sistema (especies animales y vegetales) que incrementa la producción continua y la alternancia en la oferta hacia mercados locales y nacionales.
- Diversificación de opciones alimentarias para incrementar el grado de conversión alimenticia del ganado.
- Eficiencia en el aprovechamiento del área, a través de la promoción de un uso intensivo o semi-intensivo del sistema, en contraposición al uso extensivo. La carga animal es soportada mediante el uso de pastos y forrajes balanceándose según la carga del sistema al elevar la eficiencia y producción por unidad de área.
- Integración de la agricultura a las actividades pecuarias y viceversa, con el objetivo de crear complementariedad de las producciones, para un eficiente reciclaje de materiales, nutrientes y energía aplicables en uno u otro sistema productivo (cierre de ciclo de nutrientes y energía). La inclusión de cultivos incrementa la eficiencia energética y la capacidad de producción de proteína, el uso de recursos naturales, así como la efectividad económica a una menor fuerza de trabajo a través del tiempo (11).
- Baja dependencia, alta autonomía (autonomía laboral, autonomía alimentaria y autonomía económica) y por tanto alta resiliencia a factores bióticos, abióticos y antrópicos externos.

El bienestar animal está íntimamente ligado al concepto de sostenibilidad en sistemas silvopastoriles y ganadería ecológica (34), siendo así, el bienestar animal debe ser un principio más dentro de la dinámica de diseño y manejo de sistemas agroecológicos, considerándose un indicador para el fomento de la seguridad alimentaria desde el punto de vista del principio de la inocuidad de los alimentos.

Las prácticas sostenibles relativas a los sistemas silvopastoriles y su relación con el bienestar animal, pueden partir del efecto de la inclusión de cobertura arbórea en pasturas sobre la termorregulación de los animales, esperando como efecto complementario una disminución en la tasa metabólica al utilizar menos energía para reducir el estrés calórico.

Otro ejemplo de bienestar animal mencionado por Noguera-Talavera et al. (2017), promovido a través de prácticas pecuarias de bajos insumos se menciona la eliminación de excesiva fertilización nitrogenada de pastizales, disminuyendo así el potencial de intoxicación por nitritos y tetanias por desbalance de minerales.

Los autores resaltaron los beneficios de los SSPi para la mitigación y adaptación frente al cambio climático, que con base en el principio de la intensificación ganadera con generación de servicios ambientales, promueven eficiencia en la relación unidad de superficie y productividad (30).

La diversificación de componentes influye en una alta funcionalidad de fuentes primarias, y por tanto altas tasas fotosintéticas y menores emisiones, generando un apropiado manejo del agua superficial y conservación del manto acuífero (por incremento en la densidad arbórea en pastizales) y presencia de biodiversidad funcional que hace eficiente los procesos de descomposición, incorporación y reúso de materia orgánica en el sistema.

Los diseños agroecológicos y su distribución a escala superior a la finca

Se han analizado en las secciones anteriores los casos de sistemas agroecológicos a escala de parcela y unidad productiva, cuyos procesos ecológicos pueden ser modelados y analizados por el límite y los factores de influencia que presentan dichos sistemas, aún así, son reconocidos porque se constituyen en unidades básicas a partir de las cuales se proyecta el manejo y evaluación a mayor escala, complejizando el análisis el factor población humana, que presiona con mayor intención y frecuencia los recursos de su entorno.

A nivel de parcelas o fincas, las estrategias de diseño y manejo de los sistemas representan la diversidad de opciones para alcanzar la sostenibilidad, así como los vacíos en políticas públicas, y los mecanismos que con frecuencia limitan a productores alcanzar metas comunes, identificándose en dicha diversidad la oportunidad de visualizar la cuenca, el paisaje o el territorio como entidades complejas, pero a la vez resilientes por la diversidad de manifestaciones ecosistémicas y tecnológicas que debe seguir patrones de mante-
El análisis, a una escala mayor a la de parcela, o unidad productiva asume el reto de mantener la perspectiva sobre los procesos ecológicos, y la funcionalidad de la planificación con visión de sostenibilidad como alternativas para promover la permanencia e integración de cuencas y paisajes, a la visión agroecológica.

Entre la diversidad de alternativas de análisis de los sistemas agroecológicos a escala superior a la parcela o la finca, los niveles territorios y paisajes han sido evaluados desde la comprensión del grado en que la fragmentación del paisaje influye en la viabilidad de las poblaciones de enemigos naturales en agroecosistemas; principalmente asociado a la abundancia y distribución de artrópodos, una opción para destacar la importancia de la agrobiodiversidad como impulso a los servicios ambientales.

Estudios de los procesos biológicos dentro del paisaje promueven la reintroducción de biodiversidad en monocultivos de gran escala, facilitando, la reestructuración de agrosistemas para su conversión a un manejo agroecológico (32).

En una dimensión más amplia, García et al. (2012), plantean que bajo un enfoque de territorio, el análisis de los diseños agroecológicos asociados a masas forestales deben partir de la valoración del potencial de los sistemas para la conservación de espacios naturales; y su integración a las dinámicas de otros componentes productivos como agricultura, ganadería e industria; debiendo apuntar hacia la evaluación de los sistemas agrícolas dentro de los sistemas naturales; siendo, un indicador pertinente a este nivel, la conectividad entre los sistemas (35). En esta escala los procesos ecológicos tendientes a la elaboración de un nuevo diseño agroecológico deben involucrar el análisis de atributos como disminución del régimen y riesgo de disturbios, patrones de endemismo y en general, distribución de las especies, proceso de fragmentación, tamaño de poblaciones, entre otros.

Al interrogante ¿Cuál es el punto de encuentro entre la agroecología y el ordenamiento territorial?, Migliorati (2016), pone en contexto una serie de procesos y aspectos estructurales que permiten entender el alcance de la agroecología en la planificación y configuración del territorio. El punto clave está en definir al momento de la planificación del territorio usos inteligentes de los servicios ecosistémicos (funcionalidad) que son estratégicos para la agroecología (28, 43). La visión de sistema (presencia de diferentes unidades ecogeográficas) es desde el punto de vista de configuración, el elemento de mayor ponderación, cuya expresión en políticas de desarrollo conlleva a la implementación de manejo sustentable de recursos naturales bajo los principios de organización social y participación.

Aun bajo una visión integradora entre agroecología y planificación territorial, la falta de consenso mencionada por Ferguson (2009), entre conservacionistas tradicionales enfocados más en las extinciones locales de especies por pérdida de grandes masas de bosque, en lugar de la promoción de mecanismos de restauración para facilitar la migración de poblaciones entre fragmentos para balancear a través de la migración la extinción local; y agroecólogos, es de alguna manera resuelto al analizar resultados presentados por Harvey y Sáenz (2008). En cuanto a que a nivel de paisaje la agricultura campesina diversificada, con expresión en sistemas agroforestales como las milpas, los cafetales tradicionales manejados con sombra de montaña, y los sistemas silvopastoriles contribuyen a la formación de una matriz de paisaje de alta calidad, facilitando así el proceso de migración de especies como factor en los programas de conservación de la biodiversidad.

Desde una perspectiva agronómica, para la producción agrícola de interface urbano-rural "la agroecología viene a ser una propuesta sumamente enriquecedora y para desarrollar todo su potencial, debe ser entendida tanto como una ciencia, como una práctica y como un cambio cultural (28), hacia una agricultura intensiva con base en sistemas agroalimentarios locales y acceso a mercados con precios justos.

Complementario a los procesos ecológicos medibles bajo el enfoque de territorio y paisaje, Venegas (2009) referencia la estrategia agroecológica en el archipiélago de Chiloé, Chile centrada en puntos claves como: mejoramiento en la capacidad de los productores para manejo sustentable de recursos naturales para acceder a mercados locales; transformación productiva para mejorar la productividad y competitividad frente a condiciones económicas complejas; transformación institucional para mejorar la relación entre protagonistas y entidades acompañantes, creando así relaciones armónicas entre el nivel comunitario-local; y finalmente incremento de la oferta de cultivos no tradicionales y agroin-
dustria para dinamizar el mercado local.

Para la construcción de una estrategia agroecológica a nivel de territorio, Venegas (2009) utiliza el enfoque que él mismo denomina Desarrollo del Territorio Rural con Identidad Cultural (DTR-IC), el que define como “Una continuidad de un modelo de acción agroecológica, al cual se le adiciona de forma explícita y articulada la dimensión de la identidad cultural”; mostrando a este último factor como eje motor de resultados claves en Chiloé: la revalorización de las actividades productivas como ganadería ovina tradicional, artesanía, capacidad de asociatividad e interlocución para obtener fondos, incorporación de productores a actividades alternativas como turismo rural, entre otros.

Otra escala de interés es la cuenca, que por la dimensión y número de componentes representa una importante complejidad para visualizar principios como integración y funcionalidad; el que desde la perspectiva de lo social involucra elementos de control social y gobernanza (comité de cuenca) para alcanzar las metas de funcionalidad y sostenibilidad basadas en sistemas agroecológicos. Por otro lado, desde el punto de vista económico, el fortalecimiento de cadenas de valor permite visibilizar las dinámicas productivas como ejes de desarrollo; paralelamente la evaluación ecológica debe considerar indicadores como: Transformabilidad, regeneratividad (potencial para la restauración), carga ambiental, diversidad y distribución espacial de elementos naturales, fuentes y dinámica de energía y servicios ambientales.

Implicaciones de la evaluación de los sistemas agroecológicos

En relación con la evaluación del impacto de los sistemas agroecológicos y sus diseños, un aspecto estratégico es que estos parten del grado de comprensión con que el productor aborda el manejo productivo (tipos y función de la biodiversidad), y su complejidad (mercados, recursos, contexto climático, entre otros). Es con base en esta teoría que iniciativas como evaluaciones agroecológicas u otras dirigidas a la certificación de unidades agroecológicas más que caracterizar mediante descripciones o valoraciones cualitativas de los componentes de los sistemas; deberían apuntar a la profundización del entendimiento de los ecosistemas con sus procesos ecológicos y socio-productivos como puntos que aportan a la sostenibilidad; siendo el sistema “biofinca” un enfoque de corte participativo para diagnosticar, innovar y reconocer los procesos en sistemas agroecológicos.

Como parte de los procesos socio-productivos relacionados con los sistemas agroecológicos es pertinente analizar el nivel de independencia vinculada a los conceptos autosuficiencia, autonomía y soberanía tanto de insumos, como de otros cultivos; partiendo desde el nivel de la finca como a nivel de la localidad y el territorio donde diferentes instituciones promueven la agroecología como base de desarrollo; ampliando así la utilidad de esta evaluación al desarrollo de estrategias de resiliencia y soberanía alimentaria y nutricional; así como del impacto y eficacia real de los programas institucionales dirigidos a promover o mejorar la sostenibilidad.

Desde la perspectiva de la efectividad de prácticas agroecológicas para la conservación de la biodiversidad Griffon et al. (2010) sugieren que la evaluación debe dirigirse a la identificación del grado en que las prácticas aportan al establecimiento de dinámicas metapoblacionales en parches de vegetación no alterada dentro de la matriz de paisajes.

Al medir la sostenibilidad de los sistemas agroecológicos, Villanueva et al. (2011) resalta la necesidad de vincular dichos indicadores con otros como la autonomía y la independencia, asumiendo así que entre más alta sean la independencia y el nivel de autosuficiencia mayor será el grado de autonomía y autodependencia del agroecosistema; enfatizando que “Mayor autonomía no significa mayor competitividad económica, pero si mayor capacidad de amortiguar impactos externos, como el aumento de precios de los insumos”, que comúnmente representan más del 70% de los costos de producción en unidades altamente dependientes de insumos externos.

Dentro de este espectro se encuentra el principio de la mejora continua practicado por productores de MAONIC en Nicaragua. Dicho principio consiste en una continua reflexión sobre la efectividad para la sobrevivencia de las prácticas implementadas en los sistemas productivos (4, 38), basada dicha reflexión en cambios en el entorno. Constituyéndose este actuar en una fuente continua de innovación basada en construcción o aprendizaje local que genera un perfeccionamiento continuo de los sistemas agroecológicos; así, el nuevo paradigma impuesto por el desarrollo de la agroecología también implica un nuevo enten-
dimiento de los procesos de innovación (4).

Bajo este precepto de mejora continua es posible entender la dinámica o ruta de transición a seguir por productores con diferentes visiones hacia una conversión de sus sistemas convencionales u orgánicos a sistemas agroecológicos, pudiendo dicha ruta marcar el tiempo, recursos y por tanto la eficacia del proceso de conversión.

La figura 4 presentada a continuación, representa una propuesta metodológica para evaluar diferentes fases del proceso de implementación de diseños agroecológicos en unidades productivas en conversión en comunidades de Nicaragua.

Bajo el principio de multidisciplinariedad de la ciencia agroecología se proponen una serie de fases con objetivos e instrumentos de evaluación que conllevan a la integralidad del análisis de los diseños en sus distintas variantes o arreglos, estructura y estado de avance de la transición.

La fase de diagnóstico tiene como objetivo “determinar usos de suelo y relación entre usos de suelo en sistemas productivos” para así contar con un referente que oriente las acciones de prioridad para el inicio de la transformación de los sistemas.

En esta primera fase, el proceso ha sido guiado por métodos e instrumentos propios del enfoque cualitativo como son entrevista, análisis FODA, transecto histórico, transecto ecológico, entre otros (figura 4). Al respecto, López (2012) resalta las implicaciones de la praxis agroecológica como medio de extensión rural; siendo algunas de ellas: ser un instrumento que facilita la participación del productor en el diseño y mejora de la producción agrícola, propicia empoderamiento tanto para el diagnóstico como para investigación de la efectividad de diseños agroecológicos, genera sinergias y colaboraciones entre productores, consumidores y comercializadores; y finalmente un proceso de regeneración social que se basa en el principio de responsabilidad compartida.

El rediseño desde la práctica tiene como objetivo “construir un modelo productivo integral y sostenible” basado en las potencialidades biofísicas de la unidad de interés, así como potencialidades socioeconómicas y culturales de los protagonistas en cada escala. En esta fase, las actividades que han predominado han tenido como base la aplicación de principios agroecológicos, siendo la dinámica la priorización de prácticas sostenibles, reorganización del sistema en función de una mayor integralidad de procesos ecológicos e inte-

Figura 4. Propuesta metodológica para el monitoreo y evaluación de la conversión hacia agroecología, de sistemas de producción agropecuaria. Autoría propia.

Figure 4. Methodological proposal to monitoring and evaluation agroecological conversion of production systems. Own authorship.
La gestión del diseño ha sido evaluada tomando como punto de partida la definición de estrategias de mantenimiento, monitoreo y determinación de la efectividad. El objetivo que se busca es "definir prioridades sobre la implementación y evaluación de prácticas agroecológicas" con visión de sostenibilidad; siendo los focos de la evaluación, una ruta lógica de implementación del diseño, el análisis de costos que soporte la viabilidad técnica del diseño; y un sistema de indicadores de sostenibilidad y eficiencia a largo plazo.

CONCLUSIONES

Aun cuando los sistemas agroecológicos en su conjunto cuentan con una gama de diseños, tienen diferentes dimensiones espaciales y temporales, y alternativas de expresión, es importante no perder de vista los elementos ecológicos y sociales de los que parte la fundamentación de la agroecología, los que van más allá de la promoción de una práctica o conjunto de prácticas; mientras muchos de los atributos a evaluar son entendidos de manera diferentes por los investigadores y actores locales, quienes forman la base práctica para la construcción y aún más, la evaluación y transformación de los sistemas agroecológicos.

Los sistemas agroecológicos no deben ser entendidos como una meta que se alcanza con un conjunto de diseños y prácticas, sino como un estado fundamentado en principios de continuidad, transformación y mejora hacia sistemas adaptados y resilientes expresados a nivel de finca, paisaje o sistemas organizacionales y de mercados que contribuyen a la sostenibilidad dentro de un contexto agrícola de alta competitividad, intereses sectoriales, entre otros.

Es conveniente resaltar que en la profundización de los sistemas agroecológicos es posible identificar una serie de dimensiones que van más allá de las evaluaciones económicas y técnicas, interiorizando así en elementos de la cultura y cosmovisión de las familias campesinas sobre la actividad productiva y su relación con la conservación del medio ambiente.

Aunque con arreglos temporales y espaciales distintos, los sistemas agroecológicos, son entidades vivas y, por tanto, su evaluación debe seguir lineamientos relacionados con procesos de diversificación, productividad ecosistémica, distribución equitativa de los beneficios, seguridad alimentaria e igualdad; siendo dichos indicadores ajustables a las dinámicas de investigación cualitativa, cuantitativa, e investigación-acción.

REFERENCIAS BIBLIOGRÁFICAS

35. Perfecto, I.; Vandermeer, J.; Wright, A. 2009. Natureˈs Matrix. Linking agriculture, conservation and
34. Ocampo, A.; Cardozo, A.; Tarazona, A.; Ceballos, M. C.; Murgueito, E. 2011. La investigación participativa
Bases teórico-metodológicas para el diseño de sistemas agroecológicos

Tomo 51 • N° 1 • 2019

Diversidad y distribución de la macrofauna edáfica en dos sistemas de manejo de *Moringa oleifera* (Lam.): relación con las propiedades del suelo

Diversity and distribution of edaphic macrofauna in two management systems of *Moringa oleifera* (Lam.): Relationship with soil properties

Alvaro Noguera-Talavera¹, Nadir Reyes-Sánchez², Bryan Mendieta-Araica³
¹Docente Investigador, Facultad de Recursos Naturales y Ambiente / ²Docentes Investigadores, Facultad de Ciencia Animal. Para correspondencia: Alvaro.noguera@ci.una.edu.ni

RESUMEN
Con el objetivo de determinar la relación entre diversidad y distribución vertical de la macrofauna edáfica, y propiedades físico-químicas del suelo, se llevó a cabo un estudio en predios de la Universidad Nacional Agraria. Los ensayos tuvieron una duración de 9 meses, en los que se implementaron prácticas de manejo agroecológico, y manejo convencional en ocho unidades experimentales con dimensiones de 15 m x 30 m, seleccionadas de manera aleatoria. La metodología de muestreo fue la desarrollada por el Programa Internacional Biología y Fertilidad del Suelo Tropical. Fueron levantados 12 monolitos de 25 cm x 25 cm por práctica de manejo, a una profundidad de 30 centímetros. Se realizó identificación taxonómica a nivel de Phylum, clase, orden y familia; así como de grupos funcionales detritívoros, ingenieros del suelo, herbívoros y depredadores. Fue registrada mayor densidad de macrofauna en el sistema de conversión agroecológica (7424 ind/m²) en comparisión con el sistema de manejo convencional (1984 ind/m²), con alta concentración de individuos (7488 ind/m²) en los primeros 20 centímetros del perfil; y densidad proporcional del 56.2% en la profundidad 0 a 10 centímetros. Taxonómicamente se determinó dominancia de la clase Insecta en ambos sistemas de manejo. La distribución de familias de la macrofauna edáfica fue diferente entre sistemas, con evidente influencia del rol por profundidad de muestreo. El grupo funcional ingenieros del suelo predominó en conversión agroecológica; mientras los detritívoros lo hicieron en manejo convencional. Fue determinada la influencia de la calidad de micro hábitat en las propiedades físico-químicas del suelo con el componente biológico; demostrándose efecto de las prácticas de manejo sobre la densidad, diversidad y distribución de la macrofauna edáfica.

Palabras clave: Macrofauna edáfica, Conversión agroecológica, Funcionalidad, Propiedades de suelo

ABSTRACT
With the aim to determine the relation between diversity and distribution of edaphic macrofauna and soil properties, a study was performed at National Agrarian University farm. International Program for Biology and Fertility of Tropical Soil sampling methodology was used. A taxonomical classification was done at phylum, class, order and family level as well functional groups such as detritivores, soil engineers, herbivores and predators. A highest density of macrofauna was registered on agroecological conversion system (7424 ind/m²) in comparison with conventional management system (1984 ind/m²), with major individual concentration (7488 ind/m²) on the first 20 centimeters of the soil; and population density of 56.2% in 0 to 10 centimeters strata. The number of taxa show dominance of Insecta at both management systems. About family taxa, the edaphic macrofauna distribution was different between systems with influence offuncionality in each soil strata. The soil engenier group was the dominan on agroecological consersion system; while detritivorous group was dominan in conventional system. Was determinate the influence of hábitat over physic and chemical soil properties, and the biological populations; founding efecto of management over the density, diversity and distribution of the edaphic macrofauna.

Keywords: Edaphic macrofauna, Agroecological conversion, Funcionality, Soil properties
La agricultura convencional ha sido contextualizada en diversos estudios (Altieri y Nicholls, 2012; Nieto et al., 2013; Altieri et al., 2015, Hatt et al., 2016) como factor causante de la actual crisis ambiental, que provoca baja sostenibilidad de la agricultura (Gliesman, 2013), degradación del suelo, pérdida de biodiversidad por simplificación de los ecosistemas (Hatt et al., 2016; Altieri et al., 2017), y alteración del ciclo hidrológico, además de la contaminación de aguas subterráneas y superficiales (Durán y Suárez, 2013).

Mantener la calidad de los suelos y la productividad de los cultivos es un desafío importante para la agricultura moderna. Prácticas de manejo agroecológico que tienden a incrementar el contenido de carbono del suelo y a la vez favorecer la supervivencia y actividad microbiana pueden contribuir a la sustentabilidad de los sistemas agrícolas (Ferreras et al., 2015); efectos que pueden ser evaluados a través de la composición y funcionalidad de las propiedades biológicas del suelo, entre lo que destaca la macrofauna, por la facilidad de colectarla.

La macrofauna edáfica agrupa a los invertébrados mayores de 2 mm de diámetro (Cabrera, 2012), los que presentan características ecológicas que permiten ser utilizadas como indicadores de monitoreo y diagnóstico de calidad de los suelos (Diaz et al., 2014), estado de conservación o perturbación y, salud (Cabrera, 2012; Vieira Da Cunha, 2012); así como del efecto en el tiempo de prácticas productivas (Soccorras e Izquierdo, 2014; Gómez et al., 2016).

Como elemento técnico con enfoque agroecológico en la promoción de Moringa oleifera Lam., como especie con múltiples usos, a nivel de sistemas productivos intensivos, en contraposición a los sistemas con alta demanda de insumos; se identificó la necesidad de estudiar las ventajas que implica que en sistemas de cultivos diversificados y con bajos insumos; se pueden obtener servicios asociados a la recuperación y salud del suelo por medio del incremento y manejo de la diversidad funcional de la macrofauna edáfica. Fue en el contexto de la aplicación de bioindicadores del efecto de prácticas de manejo en sistemas productivos de Moringa oleifera (Lam.) que se planteó como objetivo analizar la relación entre diversidad de macrofauna, y propiedades físico-químicas del suelo.

MATERIALES Y MÉTODOS

Características edafológicas y climatológicas de la zona, o lugar de los experimentos. El trabajo fue realizado entre Junio del 2013 y Marzo del 2014, en la unidad experimental Santa Rosa de la Universidad Nacional Agraria, localizada geográficamente en Managua, en las coordenadas 12o09’30.65”N, 86o10’06.32”W (Mendieta-Araica, 2011), a una altitud de 50 msnm.

La precipitación y temperatura media anual históricas registradas son 1099 mm y 270 ºC respectivamente, y humedad relativa de 74% (INETER, 2015); predominando dos estaciones definidas por una época seca que va desde Noviembre a Abril, y una época lluviosa de Mayo a Octubre. En el año 2013 la precipitación anual en el área fue de 1070.4 mm, menor en comparación a la media histórica, siendo Junio (285.3 mm) y Septiembre (330.2 mm), (figura 1) los de mayor precipitación (INETER, 2015).

El suelo pertenece al orden taxonómico Andisol, y clase textural Franco Arcilloso –Arenoso; y buen drenaje (Mendieta-Araica, 2011).

Procedimiento experimental

Duración de los ensayos. Los ensayos tuvieron una duración de nueve meses, con fecha de establecimiento junio 2013, y cosecha en marzo 2014, tiempo durante el cual se aplicaron prácticas de manejo agroecológico y de agricultura convencional según la planificación y enfoque de cada sistema.

El área con manejo agroecológico correspondió a un lote de 1 hectárea, y el agroecosistema con manejo convencional consistió en un área de plantación, con una extensión de 5 hectáreas; utilizándose, en ambos casos, un área efectiva de muestreo de 0.18 hectáreas. En cada sistema fueron delimitadas cuatro unidades de muestreo de forma rectangular (15m x 30m). El método definido para muestrear la macrofauna edáfica fue sistemático con monolitos separados 15 m entre sí, distribuidos en transecto diagonal dentro de las unidades de muestreo.

Vegetación colindante a los sistemas de manejo

Conversión agroecológica. La biota complementaria al agrosistema estuvo compuesta por cercas vivas con especies arbóreas como Eucalyptus camaldulensis (Dehnh.), Azadirachta indica (A. Juss), Cordia dentata (Poir.), Pithecellobium dulce (Roxb.) Benth., Albizia saman (Jacq.) Muell.), y Spondias sp (Vanderryst.); además de cultivos como Saccharum officinarum (L.), Moringa oleifera (Lam.) y Sorghum bicolor (L.).

Manejo convencional. La biota complementaria al agrosistema estuvo constituida por cercas vivas con especies arbóreas como Neem Azadirachta indica (A. Juss), Spondias sp y Albizia saman (Jacq.) Muell.; mientras los lotes circundantes corresponden a uso de suelo agrícola con Moringa oleifera (Lam.) y Sorghum bicolor (L.).

Diseño experimental. El diseño consistió en unidades experimentales de forma rectangular, seleccionadas de manera aleatoria (DCA). Cada unidad con plantas establecidas a distancia 3m x 3m, en arreglo lineal.

Tratamientos. Tratamiento 1: Manejo convencional, el que consistió en área de monocultivo de moringa, con actividades de preparación mecanizada del suelo, control mecanizado y químico de arvesnes; fertilización inorgánica, y riego. El lote que correspondió a este tratamiento tiene una historia de uso de pastura permanente de pasto estrella (Cynodon nlemfuensis). Tratamiento 2: Conversión agroecológica, cuyo enfoque fue el establecimiento de un sistema de policultivo a partir del sistema convencional, labranza mínima en la preparación del suelo, rotación de leguminosas, fertilización orgánica con
compost, incorporación de abonos verdes, sin riego y, control de arvenses con cobertura de leguminosas. El lote que correspondió a este tratamiento tiene una historia de uso de barbecho forestal o tacotal.

Evaluaciones y mediciones. Se realizó colectas de macrofauna edáfica antes de la cosecha o explotación de los sistemas. El periodo de colecta fue entre diciembre 2013 y enero del 2014, al finalizar la época lluviosa; definido a partir de los criterios propuestos por Cabrera et al., (2011).

Para la colecta se utilizó la metodología propuesta por el Programa Internacional “Biología y Fertilidad del Suelo Tropical” (Lavelle et al., 2003), y validada por Zerbin, (2010). De cada sistema de manejo se extrajeron 12 monolitos de suelo de 25 x 25 cm, hasta una profundidad de 30 centímetros; siendo los estratos: Hojarasca, 0 a 10 cm, 10 a 20 cm y 20 a 30 cm.

Los especímenes colectados fueron depositados en viales con alcohol al 70% y luego identificados a nivel de clase, y familia por profundidad de muestreo, mediante el uso de claves desarrolladas por Roldan, (1988); Castner, (2000); y Marshall, (2008), en el laboratorio de Biología de la Facultad de Recursos Naturales y del Ambiente.

La macrofauna fue clasificada en detritívoros, herbívoros, ingenieros del suelo y depredadores según los grupos funcionales propuestos por Cabrera et al., (2011). Los resultados se basan en la densidad (individuos por m2) de cada taxón, y grupo funcional identificado; y diversidad por sistema de manejo y profundidad de muestreo.

RESULTADOS Y DISCUSIÓN

Densidad de organismos de la macrofauna edáfica por profundidad y sistemas de manejo.

Fue registrada una densidad total de 9408 individuos de la macrofauna edáfica. La mayor densidad acumulada de organismos fue registrada en los primeros 20 centímetros del suelo (7488 ind/m2); con alta concentración en la profundidad 0 a 10 cm (5296 ind/m2); y densidad similar entre hojarasca con la profundidad 20 a 30 centímetros (figura 1).

<table>
<thead>
<tr>
<th>Propiedades químicas</th>
<th>Convivencia agroecológica</th>
<th>Manejo convencional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10 cm</td>
<td>10-20 cm</td>
</tr>
<tr>
<td>C.O (%)</td>
<td>2.04</td>
<td>1.68</td>
</tr>
<tr>
<td>pH</td>
<td>7.11</td>
<td>7.06</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>CIC (me/100 g suelo)</td>
<td>28.05</td>
<td>27.10</td>
</tr>
<tr>
<td>H (%)</td>
<td>7.09</td>
<td>14.99</td>
</tr>
<tr>
<td>M.O (%)</td>
<td>3.51</td>
<td>2.89</td>
</tr>
<tr>
<td>P-disponible (ppm)</td>
<td>44.69</td>
<td>32.25</td>
</tr>
<tr>
<td>K-disponible (me/100 g suelo)</td>
<td>2.46</td>
<td>2.48</td>
</tr>
</tbody>
</table>

Del conjunto de monolitos se colectó dos muestras compuestas de 2 kilogramos de suelo, para determinar propiedades químicas y físicas en el Laboratorio de Suelos y Agua (LABSA) de la Universidad Nacional Agraria (Cuadro 1).

Procesamiento estadístico. La estadística no paramétrica (Prueba de Kruskal-Wallis) fue empleada para determinar diferencias en la densidad por taxón, grupo funcional por sistema de manejo y profundidad de muestreo. Como parte de la diversidad de la macrofauna, a nivel de sistema de manejo para los taxones clases y ordenes, se determinó el índice de dominancia de la comunidad (D) mediante el método propuesto por Turner y Garner, (1991) con comparaciones de “t” student en el programa PAST versión 1.29 (Hammer y Harper, 2004).

Un análisis de conglomerados para determinar la probabilidad de similitud de familias por sistema de manejo y profundidad de muestreo fue realizado determinándose el índice de Jaccard a partir del método propuesto en Moreno, (2001). Este índice expresa el grado en que dos o más muestras son semejantes en los niveles taxonómicos presentes en ellas, utilizando en este trabajo para el nivel de familia. Análisis de componentes principales (ACP) fue realizado para determinar la asociación entre la diversidad y densidad de la macrofauna con las propiedades físico-química del suelo.
Ararat et al., (2002), reportaron como patrón en la distribución de la macrofauna del suelo, alta densidad de organismos en los primeros 10 centímetros de profundidad, con acumulación hasta de un 80.2% en relación a la densidad total, proporción que en el actual estudio correspondió a 56.2%, mientras Fernández et al., (2015) reportaron altas densidades en la profundidad 10 a 20 centímetros, y a diferencia de este estudio, notable similitud en la densidad de macrofauna edáfica, con la de la hojarasca.

Ararat et al., (2002) y Fernández et al., (2015), relacionaron la alta concentración de organismos en los primeros centímetros del perfil de suelo con la utilización de cultivo de cobertura de leguminosas (en este caso canavalia, gandul, caupi), que induce una disminución en la intensidad de luz y del impacto de las gotas de lluvia; además de la reducción en la temperatura del suelo; e implica procesos biológicos de éste como son: retención de humedad, aireación, mantenimiento de la biodiversidad funcional y eficiencia del ciclo de nutrientes, provocada según Duval et al., (2014) por el incremento gradual de compuestos asociados a la fracción mineral, y por tanto una fracción más transformada de carbono o materia orgánica lábil.

Padoa et al., (2012) determinaron que la alta concentración de organismos de la macrofauna es producto que este horizonte es una interface entre el liter y el dominio de suelo funcional.

Por su parte, Vega et al., (2014), reportaron las mayores densidades a nivel de la hojarasca, y al igual que en este trabajo, notable reducción de la densidad en la profundidad 20 a 30 centímetros. En dicho trabajo, se identificó como factores causales la concentración de biomasa de leguminosas que implicó incremento en los recursos tróficos, microhábitats e interacciones funcionales.

En el sistema conversión agroecológica fue registrada mayor densidad de macrofauna edáfica (7424 ind/m2), en comparación a manejo convencional (1984 ind/m²), resultado que coincide con el reportado por Matienzo et al., (2015), quienes lo atribuyen al grado de complejidad del sistema, expresado en la diversificación y prácticas de manejo; enfatizando, además en la importancia de los ambientes seminaturales persistentes en la circundancia de los sistemas.

La densidad de macrofauna por sistema de manejo mostró el mismo resultado de alta concentración en los primeros 10 centímetros, mientras se determinó diferencias estadísticas (p<0.05) en la densidad entre sistemas; así como en la densidad de macrofauna en las profundidades 0 a 10 y 10 a 20 en ambos sistemas de manejo (p<0.05).

En el sistema bajo conversión agroecológica se registró la mayor densidad en todas las profundidades de muestreo (figura 2).

Desde el punto de vista taxonómico se identificó asociación entre la profundidad y la riqueza de clases de la macrofauna, registrándose igual número (8) en las profundidades 0 a 10, 10 a 20 y 20 a 30 centímetros. En esos niveles, los grupos de Insecta y Heteroptera fueron los más representados en todos los períodos y sistemas. La mayor densidad de los insectos se observó en la última profundidad, lo que significó más diversidad, densidad y mejor distribución de la macrofauna que la reportada a nivel de hojarasca y 30 centímetros (5 clases).

Los resultados relacionados a la profundidad de muestreo confirman la relación con la composición y densidad de la macrofauna en ambos sistemas de manejo; registrándose diferencias significativas (p<0.05).

A nivel de familia, las pertenecientes a la clase Insecta reportaron valores altos de densidad en ambos sistemas de manejo (figura 2). Leptoceridae fue la familia más dominante en manejo convencional por la densidad que registró (1212 ind/m²), mientras en conversión agroecológica Termitidae (3660 ind/m²), Formicidae (816 ind/m²) y Escarabaeidae (576 ind/m²) fueron las familias con mayor densidad (cuadro 2).
Cuadro 2. Diversidad taxonómica (clase y familia) y, densidad (ind/m²) por profundidad y sistema de manejo de *M. oleifera* en la Universidad Nacional Agraria

<table>
<thead>
<tr>
<th>Sistemas de manejo/Clases identificadas</th>
<th>Familias</th>
<th>Profundidad de muestreo (cm)</th>
<th>Densidad Total (Ind/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manejo convencional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arañimida</td>
<td>Salticidae</td>
<td>192 160 112 48 512</td>
<td></td>
</tr>
<tr>
<td>Chilopoda</td>
<td>Scorpionidae</td>
<td>32 16 16 48</td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td>Hydrophilidae</td>
<td>240 16 16 272</td>
<td></td>
</tr>
<tr>
<td>Leptocerida</td>
<td></td>
<td>92 992 64 64 1212</td>
<td></td>
</tr>
<tr>
<td>Conversión agroecológica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplopora</td>
<td>Jalidae</td>
<td>NR 16 80 NR 96</td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>Physidae</td>
<td>NR NR 16 NR 16</td>
<td></td>
</tr>
<tr>
<td>Planorbida</td>
<td>NR 16 NR NR 16</td>
<td>16 16 16</td>
<td></td>
</tr>
<tr>
<td>Thaeridae</td>
<td>96 208 48 NR 352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrobiida</td>
<td>16 304 96 32 448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td>Elmidae</td>
<td>64 64 32 16 176</td>
<td></td>
</tr>
<tr>
<td>Chrysomelida</td>
<td>16 NR NR NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curculionidae</td>
<td>NR 16 NR NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermaptera</td>
<td>NR 16 NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escarabeida</td>
<td>NR 28 96 192 576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophilidae</td>
<td>16 NR NR NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td>NR 432 16 NR 448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drosophilida</td>
<td>16 NR NR NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noctuidea</td>
<td>NR 16 NR NR 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formicidae</td>
<td>144 304 240 128 816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vespidae</td>
<td>32 NR NR NR 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitidae</td>
<td>64 2190 1198 208 3660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacostraca</td>
<td>Armadillidae</td>
<td>192 112 80 48 432</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>Lumbricidae</td>
<td>NR 128 32 192 352</td>
<td></td>
</tr>
<tr>
<td>Índice de dominancia de la comunidad (D)</td>
<td>0.36 0.66 0.67 0.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NR: No Registrado. Ind: Individuos.

La presencia de familias por profundidad, al igual que para el nivel taxonómico clases, permiten identificar atributos como adaptación, especificidad de hábitat, y su relación con la estructura y procesos biológicos de la calidad del suelo; por ejemplo, Termitidae estuvo presente desde la hojarasca hasta los 30 centímetros de profundidad, lo que indica alto grado de adaptación a diferentes ambientes y hábitos alimenticios (Serméñ-Chicas, 2013) por ser especie pionera, asociada a raíces y tallos de *M. oleifera* durante fases no adultas de la planta, y formadores de colonias sobre ramas de árboles en la fase adulta del árbol (Palada y Chang, 2003); y transformadores de la estructura del suelo a través de la formación de bioestructuras (Da Cunha y Brandao, 2000; Serméñ-Chicas, 2013).

Formicidae presenta alta adaptación a variedad de ambientes (Castro et al., 2008; Gutiérrez-Rodríguez, 2014), alta reproducción, formadores de colonias, depredadores y transformadores de la estructura del suelo al mover (traslocar) grandes cantidades de detrito a estratos inferiores del suelo (Castro et al., 2008), por lo que, de acuerdo con Fernández et al., (2015), pueden estar presente en diferentes profundidades del perfil del suelo.

Otras familias con presencia en todos los estratos del suelo hasta los 30 centímetros fueron: Hydrobida en manejo convencional y, Elmidae y Armadillidae en conversión agroecológica (cuadro 2), los que biológicamente indican notable concentración de materia orgánica en descomposición.

Diversidad de la macrofauna en los sistemas estudiados.

Al comparar la diversidad de la macrofauna edáfica entre sistemas de manejo, se registró menor dominancia de familias en conversión agroecológica, en todas las profundidades.

En manejo convencional, la diversidad basada en el índice de dominancia de la comunidad registró alto valor (D=0.76) en la profundidad 0 a 10 cm debido a la densidad de las familias Leptoceridae, Salticidae y Hydrophylidae; cuantificando menor dominancia en la profundidad 0 a 20 cm, producto de densidades más equitativas en las familias que se registró.
En conversión agroecológica, la dominancia estuvo concentrada en las profundidades 0 a 10 cm ($D=0.66$) y 10 a 20 cm ($D=0.67$), estando este parámetro en función de la densidad o dominancia de la familia Termitidae (cuadro 2).

La menor dominancia de familias por profundidad de muestreo se dió en hojarasca en ambos sistemas de manejo; con ventaja a favor de alta diversidad y funcionalidad de organismos en el sistema en conversión agroecológica ($D=0.36$), en comparación a manejo convencional ($D=0.55$).

Los resultados a nivel de densidad y diversidad, mostraron lo que se presenta en la figura 3, en cuanto a la similitud de familias por profundidad, la que confirma un ensamblaje de funciones en el perfil del suelo.

La similitud de familias entre profundidades de muestreo registró su valor más alto ($J=0.78$) en 0 a 10 y 10 a 20 cm, lo cual indica una notable igualdad en la composición a nivel de este taxón entre ambas profundidades.

El valor de la similitud entre profundidades mostró una reducción de 26% entre los primeros 20 cm del suelo, en comparación con la profundidad 20 a 30 cm. Dicho indicador registró la mayor reducción (40%) al comparar las profundidades 0 a 30 cm con la composición de familias registradas en la hojarasca. La reducción en la similitud de familias entre profundidades fue asumida según lo expuesto por Vega et al., (2014) quienes identificaron diferencias en microhabitats, niveles de descomposición de la biomasa y, por tanto, disponibilidad de materia orgánica, humedad, temperatura, especialización de las especies a ciertos hábitats, y procesos ecológicos propios de cada profundidad en el perfil de suelo.

Grupos funcionales por profundidad. Los grupos funcionales de la macrofauna edáfica y su distribución en el perfil del suelo, fueron elementos diferenciantes entre los sistemas de manejo, identificando mayor funcionalidad a favor de cambios en la estructura y composición del suelo en el sistema de conversión agroecológica, en el que se registró una alta proporción de organismos clasificados como ingenieros del suelo, que dominaron (proporción mayor al 50% de la densidad total) en los 30 centímetros de profundidad de los monolitos (cuadro 3).

Entre el grupo funcional ingenieros del suelo, sobresalió Termitidae y Formicidae con 48.3% y 10.7% respectivamente, de la densidad total de organismos en conversión agroecológica. Otro representante de este grupo funcional como Lumbricidae (4.7%), registró valores bajos en comparación al trabajo de Duran y Suarez, (2013), quienes reportaron la dominancia de miembros de Lumbricidae en una proporción de 78.5% de todos los individuos pertenecientes al grupo funcional ingenieros del suelo.

En conversión agroecológica, la dominancia proporcional de detritívoros (68.0%) en hojarasca estuvo relacionada a la biomasa de cultivos de cobertura en la superficie del suelo, cuyo propósito fue brindar cobertura para retenencia de humedad, contribuir a la fertilidad, y controlar la densidad de arvenses; demostrando con este resultado que la incorporación de cobertura al suelo contribuye a incrementar la presencia de grupos de organismos que aportan a los cambios en las propiedades del suelo.

Las familias más representativas del grupo detritívoros fueron: Hydrobiidae, Ptilodactylidae ambos con 6.03%, Armadillidiidae con 5.8% y Thiaridae con 4.7%. La distribución de familias en el perfil del suelo fue diferente, con la presencia de Ptilodactylidae únicamente de 0 hasta 20 cm, Thiaridae, con presencia tanto en la hojarasca hasta 20 cm, y Armadillidiidae, e Hydrobiidae en todo el perfil caracterizado (cuadro 2).

La presencia de herbívoros desde 0 a 30 centímetros estuvo caracterizada por un lado por la existencia en estado larvario de organismos plaga de raíces, representantes de la familia Escarabaeidae (Aragón et al., 2005), que con base en lo reportado por Ararat et al. (2002) puede ser útil como indicador de acumulación de detritos y materia orgánica en descomposición por su condición de saprófitos; asociado además, a la implementación de labranza mínima en la preparación de suelo, y manejo de cobertura de residuos de cosecha.

En el sistema de manejo convencional tanto en la hojarasca, como en las profundidades hasta los 30 centímetros, se registró dominio de los grupos detritívoros y depredadores en una alternancia entre profundidades (cuadro 3).

En relación a los detritívoros, la familia dominante fue Leptoceridae con 94% de la densidad de detritívoros y, 60.4% de la densidad total de organismos en dicho sistema de manejo; mientras que el grupo funcional depredadores estuvo representado únicamente por la familia Salticidae en una proporción de 91% de la densidad del grupo y 23.3% de la densidad total de macrofauna edáfica en el sistema.
Asociación entre macrofauna edáfica y propiedades del suelo. La determinación de asociación entre variables edáficas y macrofauna del suelo a partir del análisis de componentes principales presentó una alta confiabilidad al explicar en los dos ejes de la componente principal 97.6% de la variabilidad acumulada correspondiente a la densidad de individuos por sistema de manejo (figuras 5 y 6).

El primer eje explicó el 79.6% de la varianza total y separó a los sistemas, ubicando el sistema conversión agroecológica a la derecha, en función de mayor asociación y complementariedad entre las variables edáficas; y, por tanto, mejor calidad de hábitat para la presencia, densidad y diversidad de la macrofauna (figura 4). El segundo eje, ubicado en la parte superior izquierda representó al sistema de manejo convencional y explicó el 18% de la varianza total e identificó el pH y el porcentaje de humedad con el hábitat asociado a los grupos de macrofauna edáfica registrados.

Las variables edáficas relacionadas a la presencia de macrofauna presentaron mayor asociación en conversión agroecológica (figura 4). Las propiedades con mayor grado de asociación entre sí fueron el porcentaje de Nitrógeno y Materia orgánica, Capacidad de intercambio catiónico y Carbono orgánico; sin embargo, las variables respuesta asociadas a la presencia de macrofauna fueron contenido de carbono orgánico, fosforo y potasio disponible, y porcentaje de humedad, lo que permitió determinar un notable dinamismo en el ciclo, disponibilidad y flujo de nutrientes en conversión agroecológica.

En manejo convencional las variables respuesta fueron el pH y el porcentaje de humedad del suelo, determinándose baja relación entre sí. Los grupos de mayor representación de la macrofauna edáfica en este sistema tuvieron alta asociación con el porcentaje de humedad del suelo.

Fue determinada asociación entre las familias más representativas de la macrofauna y las variables edáficas, siendo la excepción la familia Salticidae cuyo nicho está circunscrito al estrato superficial del suelo, y Curculionidae; explicando de esta manera la influencia del manejo de los sistemas sobre grupos específicos y las características biológicas del suelo.

La presencia de las familias Formicidae, Termitidae, y Escarabaeidae, pertenecientes al grupo funcional ingenieros del suelo, estuvo asociada a la disponibilidad de fosforo y potasio. Las familias Armadillidiidae, y Lumbricidae, también incluidas dentro del grupo ingenieros del suelo presentaron asociación con el porcentaje de humedad del suelo; al igual que organismos de la familia Julidae, que ejercen el rol de detritívoro, y cuya importancia radica en consumir hojas de bajo valor nutritivo y excretarlas transformadas (fragmentadas), facilitando el consumo para otros organismos de la macrofauna edáfica (Chávez et al., 2016), incrementado la materia en descomposición en el agroecosistema.

Padoa et al., (2012) determinó asociación entre la abundancia biológica de la familia Julidae y la relación Carbono/Nitrógeno en seis arreglos de cultivos que tuvieron como prácticas la no labranza, el uso de gandul como cobertura y rotaciones, prácticas comunes al sistema de conversión agroecológica y por tanto que refleja la relación entre las prácticas de agricultura sostenible y la calidad biológica del suelo.

Para el caso de Lumbricidae, las variables respuesta asociada a la presencia difiere del trabajo realizado por Masin et al., (2015) en donde se determinó asociación con la materia orgánica, capacidad de intercambio catiónico, nitrógeno total y el pH; diferenciándose de hábito epigéco o endógeno de las especies de dicha familia. Padoa et al., (2012) por su parte determinaron asociación entre la abundancia y el nitrógeno contenido a los 10 centímetros de profundidad.
Castro et al., (2008) determinaron que especies de la familia Formicidae al transportar restos vegetales y animales hacia el interior del suelo concentran en sus nidos, y alrededor altos niveles de fósforo lo que permite explicar la asociación entre este elemento y la densidad de hormigas cuantificadas en el sistema conversión agroecológica.

Complementariamente, Castro et al., (2008) encontraron relación entre la distribución de Formicidae y la humedad, comprobando que bajos valores de humedad incrementan la densidad y diversidad; lo que permite adicionar otro elemento a la explicación de la presencia de Formicidae en todo el perfil muestreado, debido a que el bajo porcentaje de humedad registrada (Cuadro 1), el que fue menor al 30% durante el período de evaluación generó un hábitat propicio para este grupo.

Fernández et al., (2015) evidenció la asociación existente entre la variable humedad y pH con la riqueza y densidad de especies de la macrofauna edáfica, por lo que se puede explicar a través de esto la presencia de las familias Scolopendridae y Leptoceridae las que presentaron asociación con el porcentaje de humedad del suelo; por el contrario, la presencia de Hydropsychidae estuvo asociada a la variable pH.

CONCLUSIONES

Las prácticas asociadas al manejo de los sistemas productivos de M. oleifera tuvieron efecto sobre la distribución y diversidad de la macrofauna edáfica.

Se determinó mayor complementariedad entre la distribución y diversidad de la macrofauna edáfica y las variables químicas en el sistema de conversión agroecológica.

Existe reciprocidad entre el tipo de práctica relativa al manejo del cultivo de moringa con las propiedades físico-químicas del suelo y; por tanto, influencia en la densidad y funcionalidad de los organismos de la macrofauna edáfica.

REFERENCIAS BIBLIOGRÁFICAS

Altieri, MA; Nicholls, CI. 2012. Agroecology scaling up for food sovereignty and resiliency. Sustainable Agriculture Reviews 11, 1 DOI 10.1007/978-94-007-5449-2_1.

Altieri, MA; Nicholls, CI; Montalba, R. 2017. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability, 9(349).

Aragón, GA; Morón, MA; López-Olguín, JF; Cervantes-Paredo, LM. 2005. Ciclo de vida y conducta de adultos de cinco especies de Phyllophaga Harris, 1927 (Coleoptera: Melolonthidae; Melolonthinae). Acta zoológica Mexicana. 21(2):87-99.

Díaz, PM; Rionda, HM; Duhour, EA; Momo, RF. 2014. Artrópodos del suelo: Relaciones entre la composición faunística y la intensificación agropecuaria. Ecología Austral. 24:327-334.

Fernández, TM; Castellanos, GL; Fuentes, GM; Cairo, CP; Rajedel, AN; De Melo, PR. 2015. Macrofauna del suelo en cuatro fincas en conversión hacia una producción agroecológica en el Municipio, Cruces, Cuba. Centro Agrícola. 42(1): 43-52.

Ferreras, L; Toresani, S; Bonel, B; Fernández, E; Bacigaluppo, S; Faggjoli, V. 2009. Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. Ciencia del Suelo. 27(1):103-114.

Masín, EC; Rodríguez, RA; Maitre, IM; Cerana, J; Hernandez, PJ; Anglada, M; Elizalde, HJ; Lallana, MC. 2015. Riqueza de lombrices de tierra en un Arguidol bajo cultivo de soya (Colonia Ensayo, Entre Rios). Revista Ciencia Agropecuaria. 19(1-2):104.

Matienzo, BY; Alfonso-Simonetti, J; Vásquez, ML; De la Masa, AR; Matamoros, TCh; Díaz, FY. 2015. Diversidad de grupos funcionales de la fauna edáfica y su relación con el diseño y manejo de tres sistemas de cultivos. Fitosanidad. 19(1):45-55.

Nieto, GL; Valencia, TF; Giraldo, DR. 2013. Bases pluripistemológicas de los estudios en agroecología. Enramado. 9(1):204-211.

Obarra, L; Eberhardt, DN; Marchanño, RL; Corbeels, M; Scopel, E; Muraoka, T. 2012. Soil macrofauna and its relationship with Carbon and Nitrogen contents under conservation agriculture systems in the Cerrado of Unai. FERTBIO. 5 p.

Rendón, PS; Artunduaga, LF; Ramírez, PR; Quiroz, GJ; Leyva, RE. 2011. Los macroinvertebrados como indicadores de la calidad del suelo en cultivos de Mora, Pasto y Aguacate. Revista Facultad Nacional de Agronomía. 64(1):10.

Vega, MA; Herrera, RS; Rodríguez, GA; Sánchez, S; Lamela, I; Santana, AA. 2014. Evaluación de la macrofauna edáfica en un sistema silvopastoril en el Valle del Cauto, Cuba. Revista Cuba de Ciencia Agrícola. 48(2):189-193.

Vieira Da Cunha, NF; Fernandes, C.M.E; Almeida, P.G.H; Pereira, MG; Dos Santos Leles, PS. 2012. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest. Revista Brasileira de Ciencia do Solo. 36(5):1407-1417.

Scientific Paper

Soil macrofauna as indicator of agroecological conversion of a productive system of Moringa oleifera Lam. in Nicaragua

Álvaro Noguera-Talavera, Nadir Reyes-Sánchez, Bryan Mendieta-Araica and Martha Miriam Salgado-Duarte
Universidad Nacional Agraria km 12 ½ Carretera Norte, Apdo. 453, Managua, Nicaragua
E-mail: nogueratalavera@yahoo.es

Abstract

In order to determine the diversity and functionality of soil macrofauna as biological indicator of soil health and the effect of management practices in productive systems of Moringa oleifera Lam., a study was conducted in areas of the National Agricultural University, Nicaragua. The essays lasted nine months, in which agroecological management and conventional management practices were implemented. The soil macrofauna was sampled through the methodology developed by the International Tropical Soil Fertility and Biology Program. Taxonomic identification at phylum, class, order and family level was performed, as well as of functional groups: detritivores, soil engineers, herbivores and predators. The non-parametric Kruskal-Wallis test was applied to determine statistical differences in the variation of density per taxon and functional group per management system. The density of individuals was statistically different \((p < 0.05)\) between management systems at class, order and family level. Diversity was higher in agroecological conversion, and a higher equitability of families stood out. The functional groups were different between systems, with dominance of soil engineers (64.22 \%) in agroecological conversion, and of detritivores (74.19 \%) in conventional management. Association was found of the management practices with the density and diversity of the soil macrofauna; and the organisms from the families Formicidae and Termitidae and order Coleoptera, which interacted with M. oleifera in different development stages, were identified. The number of taxonomic units constituted an indicator that allowed to distinguish between the management systems, soil health and transformation dynamics of the chemical, physical and biological properties of each system.

Keywords: biodiversity, soil management, indicator organisms

Introduction

Conventional agriculture is contextualized in different studies (Nieto et al., 2013; Altieri et al., 2015; Hatt et al., 2016) as the causative factor of the current environmental crisis, which leads to the low sustainability of agriculture (Gliessman, 2013), soil degradation, loss of biodiversity due to simplification of the ecosystems (Hatt et al., 2016; Altieri et al., 2017) and the disturbance of the hydrological cycle; in this sense, agroecology, as science with multidisciplinary approach (Nieto et al., 2013), represents the resurfacing of socially, environmentally and culturally sustainable productive systems, through the promotion of ecological processes beneficial for the soil, water conservation and biodiversity management (Altieri et al., 2015; Altieri et al., 2017).

In the transition towards ecological agriculture, a predominant principle, according to the report by Blanco et al. (2013) and Nicholls et al. (2016), is the improvement in the transformation of the physical and chemical properties and in the biological functionality of the soil (Matienzo-Brito et al., 2015), because the capacity of a crop to withstand or tolerate the attack of pest insects and diseases is linked to the biological properties of this resource (Nicholls and Altieri, 2008).

According to Navarrete et al. (2011), the ability of the soil to support biological productivity should be evaluated based on its specific functionality, because it integrates the biological, chemical and physical components in certain management situations, which suggests a relation between biodiversity and productivity. These authors refer that the evaluation of soil quality allows to understand the degree to which management practices contribute to sustainability. From this approach, the soil macrofauna is an indicator for the appraisal of the efficiency of sustainable agriculture.

The soil macrofauna groups invertebrates larger than 2 mm of diameter (Cabrera-Dávila, 2012) and shows the following characteristics: sedentary habit, short-term variability in their diversity and population size (Cabrera-Dávila, 2014), a short period between generations, high density and reproduction capacity which allow intensive sampling. Such characteristics permit it to be used as monitoring and diagnosis indicator of the soil use intensity
(Díaz et al., 2014), its conservation or disturbance status and health (Cabrera, 2012; Vieira da Cunha et al., 2012); as well as of the effect, in time, of productive practices (Socarrás and Izquierdo, 2014; Gómez et al., 2016), which is related to the report by Cabrera-Dávila (2014) about a higher variety and quantity of organisms in the soils with adequate management.

The objective of this study was to determine the diversity and functionality of soil macrofauna as biological indicator of soil health, in productive systems of *Moringa oleifera* Lam.

Materials and Methods

Geographical location and edaphoclimatic characteristics of the study area

The study was conducted between June, 2013, and March, 2014, in the experimental unit Santa Rosa of the National Agricultural University, geographically located in Managua, in the coordinates 12° 09’ 30.65” N and 86° 10’ 06.32” W, at an altitude of 50 m.a.s.l. (INETER, 2015)

The recorded historical annual mean rainfall and temperature are 1 099 mm and 27 ºC, respectively, and the relative humidity is 74 % (INETER, 2015); with predominance of two seasons defined by a dry season from November to April and a rainy season from May to October.

In 2013 the annual rainfall in the area was 1 070,4 mm (fig. 1), lower compared with the historical mean; June (285,3 mm) and September (330,2) were the months with higher rainfall (INETER, 2015).

The soil belongs to the taxonomic order Andosol; due to its textural class it is sandy loam-clayey, and it has good drainage.

Description of the experiments

The essays lasted nine months, with establishment date in June, 2013, and harvest date in March, 2014, time during which agroecological management and conventional agriculture practices were applied.

The area with agroecological management corresponded to a one-hectare lot, and the agroecosystem with conventional management consisted in a plantation area, with an extension of 5 ha; in both cases an effective sampling area of 0,18 ha was used. In each system four rectangular sampling units were delimited (15 x 30 m). The defined method for sampling the soil macrofauna was systematic with monoliths separated at 15 m between them, distributed in diagonal transept within the sampling units.

Adjacent vegetation with regards to the management systems

- Agroecological conversion. The agrosystem complementary flora was composed by living fences with such tree species as *Eucalyptus camaldulensis* (Dehnh.), *Azadirachta indica* (A. Juss.), *Cordia dentata* (Poir.), *Pithecellobium dulce* (Roxb.) Benth., *Albizia saman* (Jacq.) Merr. and *Stemmadenia obovata* (Hook. & Arn.) K. Shum.; while the surrounding lots corresponded to agricultural land use with *Moringa oleifera* (Lam.) and *Sorghum bicolor* (L.).

![Figure 1. Rainfall (mm) in the experimental unit Santa Rosa Farm, Managua. June/2013-January/2014.](image-url)
Conventional management. The complementary flora was constituted by living fences with tree species such as *A. indica* (Neem), *Spondias* sp. and *A. saman*; while the surrounding lots corresponded to pasture production, like CT-15 and *Cynodon nlemfuensis* (Vanderyst.), in addition to such crops as *Saccharum officinarum* (L.), *M. oleifera* and *S. bicolor* (L.).

Experimental design and treatments. The design consisted in experimental units of rectangular shape, randomly selected. Each unit had plants established at a distance of 3 x 3 m, in lineal arrangement.

- **Treatment 1.** Conventional management, which consisted in an area of *M. oleifera* monocrop, with activities of mechanized soil preparation, mechanized and chemical weed control, inorganic fertilization and irrigation.
- **Treatment 2.** Agroecological conversion, whose approach was the establishment of a polycrop system, minimum tillage in soil preparation, legume rotation, organic fertilization with compost, incorporation of green manures, without irrigation, and weed control with legume cover.

Evaluations. Collections were made of the soil macrofauna before the harvest or the system exploitations. The collection period was between December, 2013, and January, 2014, at the end of the rainy season, defined from the criteria proposed by Cabrera *et al.* (2011).

For the collection the methodology proposed by the International Tropical Soil Biology and Fertility Program (Lavelle *et al.*, 2003) was used. From each management system 12 soil monoliths of 25 x 25 cm were extracted, up to a depth of 30 cm.

The collected specimens were deposited in vials with alcohol at 70 %, and were later identified at phylum, class, order and family level, through the use of keys developed by Roldan (1988) and Castner (2000), in the biology laboratory of the School of Natural Resources and Environment.

The macrofauna was classified into detritivores, herbivores, soil engineers and predators, according to the functional groups proposed by Cabrera *et al.* (2011).

The results corresponded to the indicators: density (individuals per m²) of each identified taxon and functional group, and diversity per management system; diversity and composition at family level were analyzed as indicators related to the soil health, according to Rendón *et al.* (2011), and their interaction to the *M. oleifera* crop.

For the evaluation of management systems, from the set of monoliths two samples were collected composed by 2 kg of soil and the chemical and physical properties were determined in the soil and water laboratory (LABSA) of the National Agricultural University (table 1).

Experimental procedure. The composition of the area with agroecological management was constituted by a *M. oleifera* plantation with density of 1 111 plants, managed in polycrop with rotations of *Canavalia ensiformis* (L.), *Canavalia brasiliensis* (Mart. ex Benth.), *Cajanus cajan* (L.) Millsp., and *Vigna unguiculata* (L.) Walp.

The establishment and management consisted in minimum tillage, manual weed control, organic fertilization with compost (N: 35 %; P: 0,22 ppm; K: 0,86 meq/100 g of soil; Cu: 96 ppm, and humidity: 32,07 %); 0,03 kg were applied to each plant at the moment of sowing and six months later, for a total application of 33,3 kg/ha, incorporation of legumes and harvest and weed residues, and weed and insect management through legume cover.

The conventional system corresponded to a *M. oleifera* plantation in monocrop with density of 1 111 plants/ha. The establishment and management were defined by a set of practices, such as mechanized

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Conventional management</th>
<th>Agroecological conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6,54</td>
<td>6,58</td>
</tr>
<tr>
<td>OM (%)</td>
<td>3,11</td>
<td>4,40</td>
</tr>
<tr>
<td>N (%)</td>
<td>0,14-0,16</td>
<td>0,16-0,22</td>
</tr>
<tr>
<td>P (ppm)</td>
<td>35,70</td>
<td>ND</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>48,60</td>
<td>43,87</td>
</tr>
<tr>
<td>Textural class</td>
<td>Sandy loam</td>
<td>Sandy loam clay</td>
</tr>
</tbody>
</table>

tillage in the soil preparation (weed control with weeder); soil turning, which consisted in three harrow activities; and soil breakup between 20 and 30 cm of depth for furrow elaboration, with mechanical subsoil plow.

Inorganic fertilization was applied (N:15-P: 30-K:10 at a rate of 50 kg/ha) at the moment of sowing and after one year of establishment of the agrosystem; besides, sprinkler irrigation, pruning practices, pest control through inorganic chemicals (Cypermethrin 100) were used and weed control with weeder, with a frequency from two to three times during the essay, in addition to chemical control (herbicide 2-4-D and glyphosate).

Statistical processing. Non-parametric statistics (Kruskal-Wallis) was used to determine differences in the variation of density per taxon and functional group per management system. As part of the macrofauna diversity, at management system level for the taxa, classes and orders, the dominance index of the community (D) was determined through the method proposed by Turner and Garner (1991), with t-Student comparisons in the PAST program version 1.29.

A diversity analysis was made by the cluster method, to determine the probability of similarity of families per management system and Jaccard index. This index expresses the degree in which two or more samples are similar due to the species present in them, and it was used for the family level.

Results and Discussion

The system agroecological conversion recorded the highest taxonomic diversity of the soil macrofauna, with three phyla, five classes, nine orders and 19 families; compared with a phylum, three classes, two orders and four families identified in the conventional system (table 2).

The density of individuals was statistically different ($p < 0.05$) between management systems; 7 424 ind/m² were recorded in agroecological conversion, compared with 1 984 ind/m² in conventional management (table 2). This result coincides with the ones reported by Díaz-Porres et al. (2014) and Matienzo-Brito et al. (2015), who reported differences in the density and diversity of the soil macrofauna between diverse systems and simplified animal husbandry systems, with regards to intensive cropping systems, as consequence of the complexity and management of the systems. These authors found that with higher diversification there was higher biological activity, and this applies in this study to the agroecological conversion system.

At class level, the diversity components showed higher total density in agroecological conversion, associated to the dominance of specimens of the taxonomic group Insecta, which was expressed in significant differences ($p < 0.05$) in the community dominance index ($D = 0.68$); the dominance of the class Insecta was also observed in conventional management ($D = 0.59$, table 3).

Rendón et al. (2011), when analyzing the dominance of the phylum Arthropoda, and within it of the class Insecta, explained that its reproductive, feeding habits and its distribution and ecological intervention at soil level make it useful as biological indicator of the status of such resource.

The richness of classes was higher in agroecological conversion (five classes), compared with conventional management and, thus, low similarity probability was determined ($J = 0.16$) between the management systems.

Sheibani and Gholamalizadeh (2013) reported that the soil turning during tillage has effects on the physical-chemical indicators that promote the functional diversity of the macrofauna; while Ayuke et al. (2009) and Díaz-Porres et al. (2014) associated the low diversity of the soil macrofauna to such management practices as the use of agrochemicals and the modification (simplification) of the habitat when establishing M. oleifera in monocrop, elements which allow to explain the low equity values recorded.

The lower diversity in agroecological conversion, compared with the results reported by Ayuke et al. (2009), was ascribed to the age of the system. In this regard, Nicholls et al. (2016) stated that productivity based on the functional diversity tends to be low during the first three to five years in diversification schemes, compared with conventional management, to be later increased due to efficient designs regarding facilitation relations among crops, which contributes not only to the increase of diversity, but also to its functionality in favor of the system.

The above-explained fact is an indicator of the progressive increase in the diversity values as part of the evolution of the system, according to Nicholls et al. (2016), who recorded decrease of diversity after a few years of starting the practices based on organic inputs, crop rotation and incorporation of legumes.

In this sense, it is stated that biodiversity in agriculture differs among agroecosystems, which in turn differ in indicators relative to establishment time, constitution of the species and sustainable practices.
Table 2. Taxonomic classification, trophic groups and diversity of soil macrofauna organisms in two management systems.

<table>
<thead>
<tr>
<th>Management system</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Density (ind/m²)</th>
<th>Relative density (%)</th>
<th>Trophic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroecological conversion</td>
<td>Arthropoda</td>
<td>Malacostraca</td>
<td>Isopoda</td>
<td>Armadillidiidae</td>
<td>432</td>
<td>5,81</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td>Diplopoda</td>
<td>Julida</td>
<td>Julida</td>
<td>96</td>
<td></td>
<td>1,29</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coleoptera</td>
<td>Elmidae</td>
<td>176</td>
<td></td>
<td>2,37</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Chrysomelidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Curculionidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Dermentidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Searabaeidae</td>
<td>576</td>
<td></td>
<td>7,76</td>
<td>Herbivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Hydrophilidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Pilodactylidae</td>
<td>448</td>
<td></td>
<td>6,03</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diptera</td>
<td>Drosophilidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopoda</td>
<td>Noctuidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Herbivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenoptera</td>
<td>Formicidae</td>
<td>784</td>
<td></td>
<td>10,55</td>
<td>Engineer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td>Vespidae</td>
<td>32</td>
<td></td>
<td>0,43</td>
<td>Herbivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isoptera</td>
<td>Termitidae</td>
<td>3 600</td>
<td></td>
<td>48,49</td>
<td>Engineer</td>
</tr>
<tr>
<td>Conventional</td>
<td>Arthropoda</td>
<td>Gastropoda</td>
<td>Mesogastropoda</td>
<td>Physidae</td>
<td>16</td>
<td>0,22</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Planorbidae</td>
<td>16</td>
<td></td>
<td>0,22</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Thiaridae</td>
<td>352</td>
<td></td>
<td>4,74</td>
<td>Detritivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Hydrobiidae</td>
<td>448</td>
<td></td>
<td>6,03</td>
<td>Detritivoro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\sum 7424a)</td>
<td>(\sum 100)</td>
<td>64,22 % SE</td>
<td>27,37 % Det</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(D = 0,21a)</td>
<td>(H' = 1,86a)</td>
<td>J = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arachnida</td>
<td>Salticidae</td>
<td>464</td>
<td>23,39</td>
<td>Predator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chilopoda</td>
<td>Scolopendromorpha</td>
<td>Scolopendrae</td>
<td>48</td>
<td>2,42</td>
<td>Predator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insecta</td>
<td>Trichoptera</td>
<td>Hydropsychidae</td>
<td>272</td>
<td>13,71</td>
<td>Detritivore</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\sum 1984b)</td>
<td>(\sum 100)</td>
<td>74,19 % Det</td>
<td>25,81 % Pre</td>
</tr>
</tbody>
</table>

D: dominance index at community level, J: Jaccard index, H’: Shannon-Wiener index
SE: soil engineer, Det: detritivore, Her: herbivore, Pre: predator
Table 3. Density and diversity of classes and orders of the soil macrofauna in two management systems.

<table>
<thead>
<tr>
<th>Taxonomic group</th>
<th>Agroecological conversion</th>
<th>Conventional management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class Density (ind/m²)</td>
<td>Diversity</td>
</tr>
<tr>
<td>Malacostraca</td>
<td>432</td>
<td>Dominance index</td>
</tr>
<tr>
<td></td>
<td>D = 0,68</td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td>5 712</td>
<td>Dominance index</td>
</tr>
<tr>
<td></td>
<td>D = 0,68</td>
<td></td>
</tr>
<tr>
<td>Diplopoda</td>
<td>96</td>
<td>Similarity index</td>
</tr>
<tr>
<td></td>
<td>J = 0,16</td>
<td></td>
</tr>
<tr>
<td>Chilopoda</td>
<td>NR</td>
<td>Similarity index</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>832</td>
<td>NR</td>
</tr>
<tr>
<td>Arachnida</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>Order</td>
<td>Dominance index</td>
<td></td>
</tr>
<tr>
<td>Haploxida</td>
<td>352</td>
<td>D = 0,33</td>
</tr>
<tr>
<td>Isopoda</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Julida</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Isoptera</td>
<td>3 600</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1 264</td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>816</td>
<td>Similarity index</td>
</tr>
<tr>
<td>** ****</td>
<td>NR</td>
<td>J = 0</td>
</tr>
<tr>
<td>Mesogastropoda</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Littorinimorpha</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>Scolopendromorpha</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Equal letters in the rows indicate not significant differences in the index value.
NR: not recorded, **** unidentified Arachnida order.

The class Insecta recorded the orders with higher representativeness, in which Isoptera (3 600 ind/m²), Coleoptera (1 264 ind/m²) and Hymenoptera (816 ind/m²) stood out for their high density in the agroecological conversion management. These orders, according to Ayuke et al. (2009), occupy an important proportion at soil macrofauna level, which confers a good transformation dynamics of soil properties in this management system; in contrast, in conventional management Trichoptera (1 472 ind/m²) showed the highest density.

Due to the higher density of Trichoptera, the dominance index of the community recorded a higher value (D = 0,93) in conventional management, compared with agroecological conversion (D = 0,33), with significant differences (p < 0,05) between the systems; there was no probability of similarity between management practices, because they did not show common orders (table 3). The low value of the dominance index in agroecological conversion proved that the structure with different strata, low-impact management and, thus, habitat diversity and quality promote equity in the distribution of the soil macrofauna and high potential of interactions within the system.

The diversity of families was different between systems. In that sense, the community dominance (D = 0,43) was approximately double in conventional management, compared with agroecological conversion (D = 0,21); for which, in the latter management system, equity in the density of individuals per family was higher (H’ = 1,86 vs. 1,0; p < 0,05).

From the 19 identified families in agroecological conversion, eight represented 94,15 % of the population of the soil macrofauna (table 2); among which Termitidae (48,49 %), Formicidae (10,55 %) and Scarabaeidae (7,67 %) stood out. The dominance of these families was reported by Ayuke et al. (2009) and Cabrera et al. (2011), with representatives that perform important functions within the agrosystems, from the point of view of participation in the regulation of the physical-biological dynamics of the
soil, as well as in their interaction with the crops, mainly as pest organisms.

In conventional management, from the four identified families, Leptoceridae represented 60.48% of the macrofauna population, followed by Salticidae (23.39%) and Hydropsychidae (13.71%); while Scolopendridae was the family with lower proportion of individuals.

Different authors, among them Díaz-Porres et al. (2014), proved that the incorporation of harvest waste, especially when they have high nitrogen content (legumes), promotes an increase in the density of individuals. On the contrary, when in the system there is high cover of pastures, which frequently have high C/N ratio (Díaz-Porres et al., 2014), the density is lower. The results of this study coincide with the above-presented report, because in agroecological conversion periodical incorporations to the soil of legumes and pruning waste from *M. oleifera*, whose leaves have high nitrogen content (2 g in 100 g of fresh matter) were made; while in conventional management, the soil cover was mainly star grass (*C. nlemfuensis*).

The distribution of families per functional group was different between management systems with predominance of soil engineers (64.22%) and detritivores (27.37%) in agroecological conversion; and of detritivores (74.19%) and predators (25.81%) in conventional management (fig. 2).

Matienzo-Brito et al. (2015) stated that the number of functional groups differs due to the complexity in the composition of the ecosystems, with advantage for the diversified systems with management of axillary biota; this allows to explain the presence of groups with functions of biomass accumulation and transformation, such as soil engineers and detritivores. In that sense, Díaz-Porres et al. (2014) concluded that the conditions with higher influence on the diversity and functionality of the soil macrofauna groups are the organic matter content and the carbon/nitrogen ration contained in the soil.

Association has been reported between the predominance of detritivores and the little intensive soil use and, thus, with good organic matter content (fig. 2), contributes complementarily to the function of soil engineers, and confirms that the difference in the composition of functional groups was associated to the habitat conditions.

The proportion of detritivores confirmed the organic matter content recorded in the soil analysis (table 1) for both systems, as well as its quality regarding the N content and decomposition status, because representative species of the families Hydrobiidae, Hydrophilidae and Physidae are indicators of sites with decomposing sediments (manure, snail excreta and decomposing plant material).

Soil humidity (table 1) was a condition which, according to Cabrera et al. (2011) and Matienzo-Brito et al. (2015), influenced the presence of certain organisms. This factor was assumed due to the presence of snail families, such as Hydrophilidae, Planorbidae and Leptoceridae, in conventional management (table 2); and of water coleopterans, like Elmidae, in agroecological conversion (table 2). Some
species show a distribution associated to flooded sites or in water without current and to humid environments; for which they are useful as indicators of soil humidity, of the decomposition degree of organic matter and, thus, of the available nutrients in the system.

The effect of a high presence of detritivores is related to their feeding activities, because, as part of the trophic network in agrosystems, this functional group increases the efficiency of the mobility and acquisition of nutrients by the plants; this influences indirectly the presence of leaf-eating insects and crop pests (Altieri and Nicholls, 2003), condition that is not desirable from the point of view of crop health and productivity.

In practical sense, detritivores make efficient the concentration of resources expressed in biomass, organic matter and, thus, available nutrients for the plants, for which the concentration of resources attracts more potential pest organisms; however, the activities of diversification, crop rotation and promotion of natural enemies contribute to the decrease of pests and, thus, to the productive sustainability of the systems.

Silva et al. (2012) concluded that the diversity of predators, which in this study was composed mainly by the classes Arachnida (Fam. Salticidae, 23,39 %), Arthropoda (family Formicidae, 10, 55 %) and Chilopoda (family Scolopendridae, 2,42 %), indicates availability of prey. Due to their epigeal habit, they functionally contribute to the regulation of populations of potential pest species, condition which was also reported by Díaz-Porres et al. (2014) in agricultural systems, compared with naturalized systems.

An important population of tailless whip scorpions was recorded in the agroecological conversion system, as well as predators of the family Formicidae, which influenced a high proportion of herbivores, in spite of the existence of a high concentration of resources (diversity of legumes and weeds, among others). This allows to prove that the reduction of pest populations in agroecological systems is a consequence of the nutritional changes induced in the crop by organic fertilization, as well as of the increase of natural pest controls (Altieri and Nicholls, 2003).

The remarkable incidence of individuals of the family Formicidae in agroecological conversion was due to the presence of M. oleifera, legumes and flowering weeds; this group, called soil engineers, indicates particular conditions, such as the degree of disturbance of the ecosystem and, in turn, the potential interaction between crops and organisms.

Chávez et al. (2016) stated that Formicidae individuals are organisms of remarkable specific diversity, because they are commonly found in high density and constitute useful indicators, because they experience fast responses to different agricultural practices.

On the other hand, Castro et al. (2008) reported that high densities of Formicidae (leaf-cutter ants) can move the same quantity of soil as earthworms, this explains the fact that, in the management systems Solenopsis sp. and Camponotus sp. transported detritus originated by the decomposition of M. oleifera and the legumes into the soil.

Regarding the interaction of M. oleifera with Formicidae representative organisms, the plant phenology, manifested in two profuse annual flowerings, guaranteed the presence and functionality of this family; which was shown in activities such as defoliation, which had higher incidence on young plants, and the foraging of flowers in adult plants, mainly in the dry season. The predation of individuals of the Formicidae family by small spiders of the family Salticidae was also observed, with which one of the population regulation mechanisms was identified.

As part of the functional group soil engineers, the density of Termitidae in agroecological conversion shows the conditions under which this system was originated, regarding the predominance of shrubby vegetation of forestry fallow, leading to the concentration of branches and other organic material, favorable for the proliferation of these organisms.

The interaction of organisms from the Termitidae family with M. oleifera was negative, because Termitidae constituted a pest that quickly weakened the plants of different ages and led to the dry rot of branches and stems. Associated to the parasitism of Termitidae on M. oleifera, Lepidoptera larvae appeared which exerted herbivory, in addition to Hydrobiidae that acted as detritivore.

The incorporation and continuous existence of litter in the soil in the form of harvest wastes increased the density of some Formicidae orders, which transported them into the soil; and in the process predation of other macrofauna organisms, such as Termitidae and Coleoptera larvae, occurred. Other predators, like Julidae and Scolopendridae, used the galleries to exert their function, the former in the comminution of plant remains (Chávez et al., 2016).
Contrary to the report by Leyva-Rodríguez et al. (2012) and Cabrera (2012), humidity did not influence the presence of Oligochaeta, although low abundance of earthworm was observed in agroecological conversion; this coincides with the values reported by Matienzo-Brito et al. (2015) in diversified plots, in systems of soil use conversion from conventional to agroforestry, which showed low density at first and an evident increase 10 years after conversion. Individuals from this functional group were not recorded in the conventional management system.

Chávez et al. (2016) stated that the presence of Coleoptera is important, because it participates in the comminution of plant wastes, for which it is an indicator of biomass and organic matter accumulation. The presence of herbivores, mainly Coleoptera larvae (family Scarabaeidae, Phyllophaga ssp.), was associated to different agricultural soil uses and, according to Leyva-Rodríguez et al. (2012), to the incorporation of wastes and to litter quality, as a product of the presence of trees and shrubs with high protein levels in the systems.

The interaction between Scarabaeidae larvae and adults with M. oleifera in conventional management and with M. oleifera plus legumes in agroecological conversion was different between the growth stages, because in larval stage they fed from the roots of young plants; while in adult stage the species Cotinis mutabilis fed from the nectar of M. oleifera and of the legumes, which contributed to the pollination process.

Noctuidae, for being represented by larvae or caterpillars that live on the soil and feed from leaves, flowers, fruits and sometimes from seeds, represented affection risks for the M. oleifera crop in the initial growth stage, but, on the other hand, some species in adult stage participate in the pollination processes of companion tree species and, thus, attract pollinators to the system.

Conclusions

The number of taxonomic units, soil macrofauna density and diversity constituted indicators that allowed to distinguish between the agroecological management and conventional agriculture of M. oleifera.

Likewise, the high proportion of individuals from the functional groups soil engineers and detritivores in agroecological conversion was an indicator of good soil health, as well as of a remarkable dynamics of physical-biological transformation.

In systems with conventional management, the lack of individuals from the functional group soil engineers originated a slow physical-biological transformation, in spite of the high organic matter decomposition made by the dominance of detritivores.

Bibliographic references

Castro-Delgado, Silvia; Vergara-Cobian, Clorinda & Arellano-Úgarte, Consuelo. Distribución de la riqueza, composición taxonómica y grupos funcionales de hormigas del suelo a lo largo de un gradiente altitudinal en el Refugio de Vida Sil-