UNIVERSIDAD NACIONAL AGRARIA

ESCUELA DE PRODUCCION VEGETAL

DEPARTAMENTO DE CULTIVOS PERENNES

TRABAJO DE DIPLOMA

EVALUACION AGRONOMICA DE 22 CLONES DE CACAO
(Theobroma cacao L.) EN LA ESTACION EXPERIMENTAL EL RECREO

AUTOR: ELVIN GUZMAN LOPEZ

ASESOR: ING. SUSANNE THIENHAUS

MANAGUA, NICARAGUA
MAYO 1997
DEDICATORIA

A la memoria de mi hermano, Eddy Guzmán López

Elvin Guzmán
AGRADECIMIENTO

A mis padres Dionisia López y Pablo Guzmán, por el apoyo que me han brindado durante mi preparación.

A mi amiga y asesora Susanne Thienhaus, por su fiel y valiosa colaboración en la realización del presente trabajo.

Al personal de la Estación Experimental El Recreo, que de una u otra forma hicieron posible la realización de este trabajo.

Elvin Guzmán
CONTENIDO GENERAL

SECCION PAGINA

INDICE DE TABLAS i

INDICE DE ANEXOS ii

RESUMEN iii

I INTRODUCCION 1

II MATERIALES Y METODOS 4

2.1 Localización del experimento 4

2.2 Procedimiento experimental 4

2.2.1. Tratamientos 5

2.2.2. Pruebas estadísticas usadas 6

2.3. Variables evaluadas 6

2.3.1. Índice de mazorca 6

2.3.2. Productividad 6

2.3.3. Máximo número de semillas 7

2.3.4. Número de semillas por fruto 7

2.3.5. Relación entre el número promedio de semilla 7

 Y el máximo número de semillas por fruto

2.3.6. Descripción de semillas 7

2.3.6.1. Peso húmedo de semilla 7

2.3.6.2. Peso seco de semilla 8

2.3.6.3. Relación entre peso seco y peso húmedo de 8

 semilla

2.3.7. Color de los cotiledones 8

2.3.8. Porcentaje de materia grasa y cascara 8

2.3.9. Tolerancia a Phytophthora palmivora (But1.) 9

 Bulter

2.4. Manejo experimental
<table>
<thead>
<tr>
<th>SECCION</th>
<th>PAGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. RESULTADOS Y DISCUSION</td>
<td>10</td>
</tr>
<tr>
<td>3.1. Índice de mazorca</td>
<td>10</td>
</tr>
<tr>
<td>3.2. Productividad</td>
<td>12</td>
</tr>
<tr>
<td>3.3. Máximo número de semillas por fruto</td>
<td>14</td>
</tr>
<tr>
<td>3.4. Número promedio de semillas por fruto</td>
<td>16</td>
</tr>
<tr>
<td>3.5. Relación entre el número promedio y el</td>
<td>18</td>
</tr>
<tr>
<td>máximo número de semillas por fruto</td>
<td></td>
</tr>
<tr>
<td>3.6. Descripción de la semilla</td>
<td>20</td>
</tr>
<tr>
<td>3.6.1. Peso húmedo promedio por semilla</td>
<td>20</td>
</tr>
<tr>
<td>3.6.2. Peso seco de semilla</td>
<td>22</td>
</tr>
<tr>
<td>3.7. Color de los cotiledones</td>
<td>26</td>
</tr>
<tr>
<td>3.8. Evaluación de la calidad del grano</td>
<td>28</td>
</tr>
<tr>
<td>3.8.1. Porcentaje de materia grasa</td>
<td>28</td>
</tr>
<tr>
<td>3.8.2. Porcentaje de cascarilla</td>
<td>28</td>
</tr>
<tr>
<td>3.8.3. Porcentaje neto de manteca</td>
<td>29</td>
</tr>
<tr>
<td>3.9. Tolerancia a P. palmivora</td>
<td>30</td>
</tr>
<tr>
<td>3.10 Tipo de compatibilidad</td>
<td>31</td>
</tr>
<tr>
<td>IV. CONCLUSIONES</td>
<td>33</td>
</tr>
<tr>
<td>V. RECOMENDACIONES</td>
<td>35</td>
</tr>
<tr>
<td>VI. BIBLIOGRAFIA CITADA</td>
<td>36</td>
</tr>
<tr>
<td>VII. ANEXO</td>
<td>38</td>
</tr>
<tr>
<td>TABLA NO.</td>
<td>INDICE DE TABLAS</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>1.-</td>
<td>Características químicas del suelo del Banco de Germoplasma de Cacao</td>
</tr>
<tr>
<td>2.-</td>
<td>Índice de mazorca de 22 clones de cacao, según Est. Experimental El Recreo (EER) y CATIE</td>
</tr>
<tr>
<td>3.-</td>
<td>Productividad de 21 clones de cacao en condiciones de la Est. Experimental El Recreo</td>
</tr>
<tr>
<td>4.-</td>
<td>Número máximo de semillas por fruto en 21 clones de cacao en condiciones de la EER y del CATIE</td>
</tr>
<tr>
<td>5.-</td>
<td>Promedios y coeficiente de variación de la variable número de semillas por fruto en 21 clones de cacao según EER y CATIE</td>
</tr>
<tr>
<td>6.-</td>
<td>Relación entre el número promedio y el número máximo de semillas por fruto en 21 clones de cacao según EER y CATIE</td>
</tr>
<tr>
<td>7.-</td>
<td>Promedio y coeficiente de variación de la variable peso húmedo de semilla en 21 clones de cacao según EER y CATIE</td>
</tr>
<tr>
<td>8.-</td>
<td>Promedio y coeficiente de variación de la variable peso seco de la semilla en 21 clones de cacao según EER y CATIE</td>
</tr>
<tr>
<td>9.-</td>
<td>Relación entre peso seco y peso húmedo por semilla en 21 clones de cacao según EER y CATIE</td>
</tr>
<tr>
<td>10.-</td>
<td>Presencia de color blanco y morado en 21 clones de cacao con características criollas y trinitarias</td>
</tr>
<tr>
<td>11.-</td>
<td>Análisis de materia grasa, cascarilla y porcentaje neta de manteca en nueve clones de cacao</td>
</tr>
<tr>
<td>12.-</td>
<td>Evaluación del tipo de compatibilidad en cinco clones de cacao. EER. 1997.</td>
</tr>
<tr>
<td>13.-</td>
<td>Cuadro resumen de las variables evaluadas</td>
</tr>
<tr>
<td>ANEXO NO.</td>
<td>PAGINA</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>1.- Tabla 13. Cuadro resumen de las variables evaluadas</td>
<td>38</td>
</tr>
<tr>
<td>2.- Fotografías</td>
<td></td>
</tr>
<tr>
<td>- Clon RIM 75</td>
<td>39</td>
</tr>
<tr>
<td>- Clon RIM 23</td>
<td>40</td>
</tr>
<tr>
<td>- Clon RIM 43</td>
<td>41</td>
</tr>
<tr>
<td>- Clon RIM 44</td>
<td>42</td>
</tr>
<tr>
<td>- Clon RIM 48</td>
<td>43</td>
</tr>
<tr>
<td>- Clon RIM 71</td>
<td>44</td>
</tr>
<tr>
<td>- Clon RIM 78</td>
<td>45</td>
</tr>
<tr>
<td>- Clon RIM 52</td>
<td>46</td>
</tr>
<tr>
<td>- Clon RIM 8</td>
<td>47</td>
</tr>
<tr>
<td>- Clon ICS 6</td>
<td>48</td>
</tr>
<tr>
<td>- Clon ICS 8</td>
<td>49</td>
</tr>
<tr>
<td>- Clon ICS 16 y ICS 39</td>
<td>50</td>
</tr>
<tr>
<td>- Clon ICS 47 y ICS 84</td>
<td>51</td>
</tr>
</tbody>
</table>
RESUMEN

I.- INTRODUCCIÓN

La especie *Theobroma cacao* L. conocida comúnmente como cacao, se encuentra presente en Nicaragua desde los tiempos anteriores a la llegada de los españoles al continente americano y cuyo fruto era utilizado por los aborígenes como moneda y fuente de alimentación (2).

En los años de 1920 a 1940, el cacao tipo criollo de Nicaragua, era muy apreciado en el mercado internacional por su calidad, pero progresivamente la producción fue disminuyendo por diversas causas: ubicación en áreas ecologicamente marginales, presencia de enfermedades como la buba y mazorca negra, bajos precios y poco interés del gobierno por su desarrollo como cultivo industrial (1).

Según estadísticas de la Organización Internacional del Cacao (ICCO), se registró un déficit de producción que asciende a 87,000 toneladas para el año cacaotero 1991/1992, comparado con el excedente revisado para 1990/1991 de 171,000 toneladas que lo convierte en el primer déficit de producción desde 1983 - 1984 (8).

Estimaciones posteriores de la ICCO revelaron un segundo año de déficit de producción de 135,000 toneladas con respecto a la demanda mundial para 1992/93, bajando las reservas de cacao a una cantidad equivalente de cinco meses y medios de moliendas mundiales anuales, excluyendo las existencias de la Reserva de Estabilización de la ICCO (9).

Reaccionando a la preocupación por la cosecha, en Septiembre 1993 hubo un realce significativo en los precios del cacao, llegándose el precio internacional del grano a valores mayores de US$ 1,200 por tonelada (9).
Hasta el mes de Agosto de 1996, los precios básicos de cacao en grano se fijan en la Bolsa de Nueva York en US$ 1,524/tonelada (19). Esta nueva situación económica ha incentivado a varios organismos de ampliar las áreas de siembra en Nicaragua.

Según los datos de los zonales del MAG y del INRA, la distribución actual de las áreas de cacao en Nicaragua se concentra en 6,195 ha, en cinco departamentos: Matagalpa, Rivas, Granada, Atlántico Norte, Atlántico Sur y Río San Juan. La producción actual se estima en aproximadamente 1,000 toneladas anuales (17).

En vista de mejorar la productividad de los cultivares nacionales, el Ministerio de Agricultura y Ganadería (MAG) inició desde 1982 la distribución de semilla híbrida a nivel nacional a partir de clones de orígenes diferentes, prevaleciendo cruces de trinitarios de tipo UF por alto o bajo amazónico, perteneciendo estos a una calidad aromática común o regular.

Debido a la importancia actual en lo que se refiere a la calidad del grano para lograr mejores precios en el mercado mundial, la Estación Experimental El Recreo realizó en 1981-82 una introducción de clones RIM e ICS de origen criollos y trinitarios con supuestas características sobresalientes en cuanto a la calidad del grano.
El presente trabajo se realizó con los siguientes objetivos:

1.- Determinar las características agronómicas de los clones de cacao ICS y RIM en condiciones de La Estación Experimental El Recreo/Rama.

2.- Seleccionar clones para su incorporación a la producción de semillas para su posterior validación en las diferentes regiones del país.
II.- MATERIALES Y METODOS

2.1. **Localización del experimento**

El estudio se realizó en la Estación Experimental El Recreo (EER), Km. 279 Carretera al Rama, Región Autónoma Atlántico Sur. Su ubicación geográfica está entre los 12° 7' latitud norte y los 84° 24' longitud oeste a una altura de 15 msnm. La zona de vida se clasifica como bosque tropical húmedo, con una precipitación promedio anual de 3,025 mm, temperatura promedio anual de 25.4° C, humedad relativa anual de 78.28 % y una radiación solar diaria de 4 horas 13 minutos (7,12).

Las áreas de cacao se encuentran en los suelos aluviales paralelo al Río Mico; el análisis de fertilidad del suelo donde se estableció el ensayo se presenta a continuación:

Tabla 1.- Características químicas del suelo donde se ubica el Banco de Germoplasma de Cacao

<table>
<thead>
<tr>
<th>Análisis textural</th>
<th>Análisis químico</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCILLA (%) : 60</td>
<td>pH : 5.6</td>
</tr>
<tr>
<td>LIMO (%) : 15</td>
<td>M.O.: 1.6%</td>
</tr>
<tr>
<td>ARENA (%) : 25</td>
<td>N : 0.08%</td>
</tr>
<tr>
<td></td>
<td>P : 0.83 ppm</td>
</tr>
<tr>
<td>CLASE TEXTURAL: Franco Arcilloso</td>
<td>K₂O : 0.1 meq/100 g suelo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Suelo y Agua, Universidad Nacional Agraria (18).
2.2. **Procedimiento experimental**

2.2.1. **Tratamientos**

Los tratamientos fueron los siguientes clones:

<table>
<thead>
<tr>
<th>Clones RIM</th>
<th>Clones ICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosario Izapa Mexico</td>
<td>Imperial College Selection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origen</th>
<th>Origen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico, Chiapas Tuxtlachico</td>
<td>Trinidad, River Estate.</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>RIM - 9</td>
<td>14)</td>
<td>ICS - 16</td>
</tr>
<tr>
<td>2)</td>
<td>RIM - 15</td>
<td>15)</td>
<td>ICS - 1</td>
</tr>
<tr>
<td>3)</td>
<td>RIM - 23</td>
<td>16)</td>
<td>ICS - 84</td>
</tr>
<tr>
<td>4)</td>
<td>RIM - 8</td>
<td>17)</td>
<td>ICS - 43</td>
</tr>
<tr>
<td>5)</td>
<td>RIM - 43</td>
<td>18)</td>
<td>ICS - 39</td>
</tr>
<tr>
<td>6)</td>
<td>RIM - 44</td>
<td>19)</td>
<td>ICS - 8</td>
</tr>
<tr>
<td>7)</td>
<td>RIM - 52</td>
<td>20)</td>
<td>ICS - 6</td>
</tr>
<tr>
<td>8)</td>
<td>RIM - 56</td>
<td>21)</td>
<td>ICS - 44</td>
</tr>
<tr>
<td>9)</td>
<td>RIM - 71</td>
<td>22)</td>
<td>ICS - 47</td>
</tr>
<tr>
<td>10)</td>
<td>RIM - 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11)</td>
<td>RIM - 48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12)</td>
<td>RIM - 78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13)</td>
<td>RIM - 117</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los clones fueron introducidos en 1982, procedentes del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) injertados sobre patrones IMC-67 resistentes al mal del machete; a la Estación Experimental El Recreo (EER) en el marco del convenio MIDINRA/IICA, Fondo Simón Bolívar.
2.2.2. Pruebas estadísticas usadas

La distribución de los tratamientos se presentó en forma de parcelas lineales individuales por clon. Según metodología del CATIE diseñada para este tipo de caracterización, en cada clon se tomaron repeticiones mínimas necesarias según la variable a evaluarse para llegar a un coeficiente de variación aceptable. Las variables secundarias (relación entre dos variables primarias) se analizaron comparando sus promedios (3).

El área total fue de 1.5 ha. El área de muestreo fue de 36 m² correspondiente a 4 árboles/clon. Los clones fueron evaluados durante 18 meses, aproximadamente dos ciclos y medio de producción.

2.3. Variables evaluadas en la caracterización

2.3.1. Índice de mazorca

Es el número de frutos de un clon específico que se necesita para obtener 1 kg de cacao seco. Este dato es calculado al dividir 1,000 entre el producto del número promedio de semillas por mazorca y el peso promedio de semilla seca en gramos.

El dato se calculó con los promedios de los dos descriptores componentes.

2.3.2. Productividad

La productividad de un clon se expresa como el número de frutos por árbol producido dentro de cierto período. Este estimado fue codificado por el CATIE de la siguiente manera:
1 = Muy bajo : Aproximadamente 40 frutos cosechados en 3 años.
3 = Bajo : Aproximadamente 40 frutos cosechados en 2 años.
5 = Intermedio: Aproximadamente 40 frutos obtenidos de 3-4 cosechas durante un año.
7 = Alto : Aproximadamente 40 frutos obtenidos en 2 cosechas el mismo año.
9 = Muy alto : Aproximadamente 40 frutos cosechados al mismo tiempo.

2.3.3. Máximo número de semillas
Número superior de semillas por fruto, se registró a partir de 40 frutos por clón.

2.3.4. Número de semillas por fruto
Se calcula el número promedio de semillas por mazorcas a partir de 40 frutos por clón.

2.3.5. Relación entre el número promedio de semillas por fruto y el máximo número de semillas
La relación es obtenida de la misma muestra que fue usada para las medidas de los dos descriptor es componentes.

2.3.6. Descripción de semillas
Los datos fueron tomados de semillas sin mucílago y testa, escogidas al azar en cada fruto.

2.3.6.1. Peso húmedo de semilla
El peso promedio de la semilla fresca se calculó en base a 15 semillas de 10 frutos por clón y se midió en gramos.
2.3.6.2. Peso seco de semilla

Las semillas de la misma muestra tomada para peso húmedo, fue secada en un horno por 1.5 horas a 130°C y enfriada a temperatura ambiente y luego pesada en una balanza analítica en gramos.

2.3.6.3. Relación entre peso seco y peso húmedo de la semilla

Este resultado es obtenido por la división del promedio de peso de la semilla seca y el promedio del peso de la semilla húmeda y es un indicador de las pérdidas causadas por el secado de la semilla de cacao.

2.3.7. Color de los cotiledones

Se evaluaron 15 semillas por cada uno de 20 frutos, eliminando previamente el mucílago y clasificando el color de cada semilla según las categorías:
- Porcentaje de semillas de color blanco.
- Porcentaje de semillas de color morado claro (intermedio).
- Porcentaje de semillas de color morado.

2.3.8. Porcentaje de materia grasa y cascarilla

El análisis se efectuó en nueve clones promisorios por el Laboratorio de Alimentos del Ministerio de Economía y Desarrollo (LABAL/MEDE), utilizando la siguiente metodología:
- Porcentaje de grasa: se realizó por el método Soxlett, el cual consistió en tomar una muestra de 3-4 g de masa de cacao triturada, extrayendo la grasa con el solvente Bencina de Petróleo.
- Porcentaje de cascarilla: Se tomó como muestra la cantidad de 50 g de cacao con 5 repeticiones, la cual fue puesta a tostar, luego se separó la cascarilla quedando limpio los cotiledones, pesándose por separados la cascarilla y el cacao en una balanza analítica.
-Porcentaje neto de manteca: se calculó según la siguiente fórmula: \(\% \text{neto manteca} = (100 - \% \text{cascarilla}) \times \% \text{materia grasa} / 100 \)

2.3.9. Tolerancia a *Phytophthora palmivora* (Butl.) Bultter

Se calculó el porcentaje de frutos afectados por el hongo *Phytophthora palmivora* (Butl.) Bultter, según la fórmula:
\(\% \text{afectación} = \frac{\text{no. de frutos enfermos}}{\text{no. de frutos sanos + enfermos}} \)

2.3.10. Prueba de autocompatibilidad

Se verificó el sistema de compatibilidad en cinco clones ICS, polinizando un promedio de 40 flores por clon con el polen de flores del mismo árbol, según la siguiente metodología:
Las flores se cubren un día antes de su apertura natural con tubos de plástico, cubiertos con gasa, para evitar la entrada de los insectos polinizadores. El tubo se coloca sobre el botón floral y se fija con plastilina al tronco o rama. El segundo día se efectúa la autopolinización una vez que la flor esté completamente abierta. El tercer día se descubre para ver si la flor quedó prendida. A los diez días se realiza otra revisión.

2.4. Manejo experimental

Se realizaron dos aplicaciones por año de fertilizante completo de la fórmula 15-15-15 (Nitrógeno, Fósforo, Potasio) a razón de 200 g/árbol/aplicación y una aplicación de urea 46% a razón de 100 g/árbol al final de la estación lluviosa.

Se efectuaron dos podas de mantenimiento al año la primera en el mes de junio y la segunda en el mes de noviembre. El control de malezas, se realizó de forma manual cada 3 meses. No se realizaron aplicaciones de pesticidas, únicamente se efectuó el control cultural, eliminando frutos afectados por *P. palmivora*.
III. RESULTADOS Y DISCUSION

3.1 Índice de mazorca

La Tabla 2 presenta los índices de mazorca ordenados de menor a mayor, los tratamientos RIM-9, ICS-6, ICS-8, ICS-16 e ICS-39 presentaron el índice más bajo, ya que necesitan solamente 18 mazorcas para obtener 1 kg de cacao seco, debido a sus altos valores en cuanto a número de semillas por mazorca y su alto peso seco de almendra.

El índice de mazorca más alto (41) se registró en el clon RIM-44, debido al tamaño y peso inferior de su semilla.

Según la evaluación, el clon ICS-1 obtuvo un índice de mazorca de 38, contradiciéndose este dato con el del CATIE (1981), donde se registró un valor de 16.3. Comparaciones con el fenotipo de la mazorca (color, forma) no coinciden con las descripciones de otros Bancos de Germoplasma, por lo que se concluye que existe una confusión con respecto a este clon en el Banco de Germoplasma de El Recreo. Por este motivo no se tomará en cuenta en el resto de las evaluaciones.
TABLA 2. Índice de mazorca de 22 clones de cacao, según Estación Experimental El Recreo y CATIE (3).

<table>
<thead>
<tr>
<th>Clones</th>
<th>Índice de mazorca</th>
<th>Índice de mazorca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est. Exp. El Recreo</td>
<td>CATIE (3)</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>18.16</td>
<td>16.8</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>18.38</td>
<td>21.2</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>18.61</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>18.81</td>
<td>17.9</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>19.48</td>
<td>22.7</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>20.32</td>
<td>16.2</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>20.61</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>21.23</td>
<td>16.8</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>22.1</td>
<td>18.4</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>22.56</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>23.14</td>
<td>22.5</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>23.16</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>23.70</td>
<td>41</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>25.23</td>
<td>19.2</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>25.68</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>26.05</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>26.09</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>26.21</td>
<td>37.5</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>27.8</td>
<td>28.3</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>27.37</td>
<td>28.3</td>
</tr>
<tr>
<td>ICS - 1</td>
<td>37.81</td>
<td>16.3</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>41.36</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
3.2. **Productividad**

La productividad expresada como el número de mazorcas producidas por árbol por año, es una variable que determina el rendimiento y está influenciada por características propias del cultivar y su interacción con el medio ambiente.

En general los clones evaluados sufrieron daños considerables ocasionados por el huracán JUANA en 1988 e inundaciones posteriores del Río Mico, lo que ha impedido que el material genético pueda expresar todo su productividad potencial.

La tabla 3 refleja la productividad de los clones, donde los clones RIM-52 (24 frutos/árboles), RIM-44 (21 frutos/árboles), RIM-9 (21 frutos/árboles) presentaron productividad intermedia, el RIM-15 presentó productividad alta y los clones que presentaron muy baja productividad son RIM-43 (6 frutos/árboles), RIM-8 (8 frutos/árboles), ICS-84 (6 frutos/árboles), ICS-44 (7 frutos/árboles) e ICS-16 (3 frutos/árboles).

En cuanto a los clones ICS se logró observar una mejor producción en los años siguientes como producto del proceso de recuperación de los desastres naturales, particularmente en los clones ICS-16, 39 y 43, caracterizados por el CATIE como clones de productividad media (ICS-16 y 43) y alta (ICS-39).

El clon RIM-44, a pesar de tener una productividad intermedia, rinde apenas 0.5 kg de cacao seco por arbol por año, debido a su alto índice de mazorca.
Tabla 3. Productividad de 21 clones de cacao en condiciones de la Estación Experimental El Recreo.

<table>
<thead>
<tr>
<th>Clones</th>
<th>Productividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 9</td>
<td>5</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>3</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>3</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>3</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>3</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>5 intermedio</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>7 alto</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>5</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>3 bajo</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>3</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>1 muy bajo</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>1</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>3</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>3</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>3</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>1</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>3</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>1</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>1</td>
</tr>
</tbody>
</table>

* estos clones se caracterizaron en el Banco de Producción de Semilla Híbrida con Polinización Manual
3.3. Máximo número de semillas por fruto

Dado que el número de óvulos es una característica genética y varía para cada clon, existen diferencias bien marcadas en cuanto al máximo número de semillas producidas por fruto, ya que a mayor número de óvulos por ovario existe mayor probabilities de fecundación por ovario, por lo tanto más semillas por fruto.

Existe una alta correlación entre valores de este descriptor y el número de óvulos por ovario (3).

La tabla 4 refleja el máximo número de semillas por fruto/clon, presentando los valores más altos los clones RIM-56 y RIM-44 con 56 y 52 semillas respectivamente. En el resto de los tratamientos se registraron valores máximos comprendidos entre 40 y 49 semillas/fruto.

Ocho clones estudiados, presentaron un número máximo de semillas superior a aquellos encontrados en el catálogo del CATIE y cuatro clones presentaron un número inferior.
TABLA 4. Número máximo de semillas por fruto en 21 clones de cacao en condiciones de la Estación Experimental El Recreo y del CATIE (3).

<table>
<thead>
<tr>
<th>Clones</th>
<th>Máximo número de semillas/fruto EER</th>
<th>Máximo número de semillas/fruto CATIE (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 9</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>48</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>52</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>46</td>
<td>43</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>41</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>56</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>45</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>44</td>
<td>39</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>41</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>47</td>
<td>51</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
3.4. Número promedio de semillas por fruto

Aunque la estructuración de la semilla es una característica fuertemente influenciada por el medio ambiente, el número de semillas por fruto es económicamente importante, varía para cada fruto y es una característica a tener en cuenta para la diferenciación de los clones.

Los clones RIM-117 (28.8 semillas), ICS-44 (28.2 semillas), RIM-52 (27.4 semillas), RIM-23 (24.85 semillas) presentaron un número de semillas por debajo de 30 semillas por fruto como se observa en la tabla 5. Al comparar los datos de la EER con los datos del CATIE (3), se observa que los clones RIM-9, RIM-75, RIM-117, ICS-44 y RIM-52 presentaron más de 10% de variación entre los datos obtenidos; en el caso del RIM-9 el resultado fue superior en El Recreo y en los clones restantes el número de semillas fue superior en el CATIE (3).

El número de semillas por fruto está influenciado por el número de óvulos existentes por clon y por la eficiencia en la polinización. Dado que el número de semillas es un componente del rendimiento, al igual que el tamaño de la misma, es necesario seleccionar clones que posean un mayor número promedio de semillas con un peso superior a 1 g a fin de aumentar la productividad del cultivo. Los clones ICS-6, ICS-47, ICS-16, ICS-43, RIM-9 e ICS-8 poseen esta característica.
TABLA 5.- Promedios y coeficiente de variación de la variable número de semillas por fruto en 21 clones de cacao según EER y CATIE (3).

<table>
<thead>
<tr>
<th>Clones</th>
<th>Número semillas/ fruto, EER</th>
<th>Coeficiente de variación</th>
<th>Número semillas/ fruto, CATIE (3)</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS - 6</td>
<td>36.27</td>
<td>19.5</td>
<td>34.7</td>
<td>25.6</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>35.75</td>
<td>12.0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>35.75</td>
<td>15.0</td>
<td>34.2</td>
<td>26.6</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>34.52</td>
<td>17.9</td>
<td>33.1</td>
<td>15.7</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>34.32</td>
<td>28.2</td>
<td>30</td>
<td>24.0</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>34.2</td>
<td>19.3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>32.77</td>
<td>30.0</td>
<td>33.9</td>
<td>29.5</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>32.57</td>
<td>30.7</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>32.27</td>
<td>28.3</td>
<td>35.3</td>
<td>24.9</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>32.05</td>
<td>33.1</td>
<td>30.0</td>
<td>28.7</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>32.0</td>
<td>23.0</td>
<td>33.4</td>
<td>24.2</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>31.82</td>
<td>37.9</td>
<td>35.5</td>
<td>29.6</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>31.15</td>
<td>43.6</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>31.12</td>
<td>38.8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>30.00</td>
<td>35.5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>28.8</td>
<td>39.5</td>
<td>34.7</td>
<td>19.0</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>28.22</td>
<td>36.0</td>
<td>34.9</td>
<td>16.6</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>27.4</td>
<td>33.4</td>
<td>34.5</td>
<td>17.7</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>26.21</td>
<td>32.3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>26.36</td>
<td>39.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>24.85</td>
<td>41.6</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE
3.5. Relación entre el número promedio y el número máximo de semillas por fruto

Esta relación indica cuan eficiente es un clon en la producción de semillas, si esta producción es influenciada por incompatibilidad, condiciones del tiempo durante la floración, insectos polinizadores, cantidad del polen en el pistilo entre otras.

Entre más alta sea esta relación mejor es la eficiencia de la polinización. En la tabla 6 se demuestra que el ICS-47 posee un índice de 0.87, es decir que el 87% de los óvulos se fecunda y se convierten en semillas, seguido de los clones ICS-6 e ICS-43 con índices de 0.77 y 0.78.

Los clones que presentaron una relación menor de 0.6 son RIM-56, RIM-23 y RIM-44.

Los coeficientes fueron en un 5% mayor en el CATIE con un promedio de 0.75 contra 0.70 en El Recreo, indicando que las condiciones del CATIE son más favorables para la polinización. Solamente en los clones ICS-6 e ICS-16 los coeficientes fueron mayores en El Recreo.
TABLA 6.- Relación entre el número promedio y el número máximo de semillas por fruto en 21 clones de cacao según EER y CATIE (3).

<table>
<thead>
<tr>
<th>Clones</th>
<th>Coeficiente:</th>
<th>Coeficiente:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.medio de semillas/No.máx.de semillas/fruto</td>
<td>No.medio de semillas/No.máx.de semillas/fruto</td>
</tr>
<tr>
<td></td>
<td>EER</td>
<td>CATIE (3)</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>0.87</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>0.78</td>
<td>0.85</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>0.77</td>
<td>0.68</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>0.76</td>
<td>0.67</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>0.74</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>0.73</td>
<td>0.75</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>0.72</td>
<td>0.74</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>0.70</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>0.69</td>
<td>0.78</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>0.69</td>
<td>0.71</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>0.66</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>0.65</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>0.64</td>
<td>0.74</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>0.64</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>0.64</td>
<td>0.81</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>0.60</td>
<td>0.81</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>0.60</td>
<td>0.82</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>0.59</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>0.55</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>0.55</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
3.6. **Descripción de la semilla**

3.6.1. **Peso húmedo promedio por semilla**

Debe tomarse en cuenta en la determinación del peso medio del cultivar, la influencia de la correlación negativa entre la cantidad de semillas producidas y su peso para obtener el valor efectivo del peso del cultivar (14).

Según los promedios obtenidos, los clones ICS-8 (2.49 g), ICS-16 (2.45 g), ICS-44 (2.38 g), ICS-6 (2.34 g), RIM-56 (2.31 g), RIM-9 (2.30 g), ICS-39 (2.28 g) presentaron un peso húmedo superior al resto. RIM-44 e ICS-43 se diferenciaron en el grupo, debido al tamaño pequeño de su semilla.

Con excepción de RIM-78, los valores del peso húmedo por semilla fueron menores en El Recreo comparado con los clones evaluados en el CATIE, correspondiendo a una variación de 12.92%, lo cual podría explicarse por condiciones edafoclimáticas más favorables para el cultivo de cacao en el CATIE comparado con El Recreo.

Dado que el peso de la almendra es una componente del rendimiento, se hace necesario seleccionar clones con semillas medianas o grandes y uniformes, lo que reviste especial importancia para el tostado y el procesamiento en general, en la elaboración de chocolate, ya que semillas pequeñas pueden llegar a quemarse antes de que semillas grandes logren tostarse, además a menor tamaño de semilla habrá más semillas por kilogramo, aumentando el porcentaje de cascarilla (14).
TABLA 7.- Promedio y coeficiente de variación de la variable peso húmedo de semilla (g) en 21 clones de cacao, según EER y CATIE (3).

<table>
<thead>
<tr>
<th>Clon</th>
<th>Peso húmedo/semilla (g)</th>
<th>Coeficiente de variación</th>
<th>Peso húmedo/semilla (g)</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS - 8</td>
<td>2.49</td>
<td>7.9</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>2.45</td>
<td>13.1</td>
<td>2.94</td>
<td>12.5</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>2.38</td>
<td>15.3</td>
<td>2.47</td>
<td>11.6</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>2.34</td>
<td>7.8</td>
<td>2.60</td>
<td>8.5</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>2.31</td>
<td>11.5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>2.29</td>
<td>5.7</td>
<td>2.53</td>
<td>5.3</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>2.28</td>
<td>19.5</td>
<td>2.30</td>
<td>5.5</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>2.23</td>
<td>14.0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>2.21</td>
<td>8.4</td>
<td>2.55</td>
<td>9.7</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>2.20</td>
<td>16.4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>2.19</td>
<td>16.6</td>
<td>2.67</td>
<td>9.7</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>2.12</td>
<td>10.8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>2.11</td>
<td>12.4</td>
<td>2.03</td>
<td>15.1</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>2.04</td>
<td>4.7</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>1.97</td>
<td>17.4</td>
<td>2.44</td>
<td>7.1</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>1.97</td>
<td>10.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>1.93</td>
<td>18.4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>1.90</td>
<td>4.7</td>
<td>2.36</td>
<td>8.2</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>1.80</td>
<td>15.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>1.62</td>
<td>14.0</td>
<td>1.73</td>
<td>14.6</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>1.21</td>
<td>10.3</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
3.6.2. Peso seco de semilla

En cuanto a características físicas, la industria indica que el peso medio seco de la almendra no debe ser inferior a un gramo (16).

Según Morera (1989), siempre hay una variación en el peso mismo de cultivares homogéneos, debido a factores como el medio ambiente y la posición del fruto en el árbol. Esto explica diferencias encontradas entre los datos tomados en este estudio y los del catálogo del CATIE. Las investigaciones sobre el modo de herencia de este carácter indican que se encuentra bajo control genético, por medio de cruces dirigidos de clones de semillas grandes con clones de semillas pequeñas (14).

El clon RIM-117 (1.64 g) resultó superior al resto seguido por los clones ICS-44 (1.61 g), ICS-39 (1.60 g), RIM-9 (1.58 g) e ICS-8 (1.57 g). Por otro lado el menor peso seco lo registró RIM-44 con 0.78 g; esto se debe al tamaño pequeño de su almendra cuyo peso seco es inferior al requerido por la industria, por lo tanto su valor comercial es bajo.

Al comparar el peso obtenido en este estudio y el peso seco según catálogo del CATIE (3) existe una variación de 9.16% o sea existe una diferencia menor que en la comparación del peso húmedo, probablemente la muestra de semilla utilizada en el CATIE tenía un porcentaje de humedad mayor, lo que se puede explicar con el tiempo que transcurre entre la cosecha y la toma de datos y la época de cosecha.
La comparación del coeficiente Peso seco/Peso húmedo confirma que el coeficiente promedio en el CATIE fue de 0.63 contra 0.67 en El Recreo, lo que significa que de la muestra de semillas del CATIE se extrajo 4% más de humedad.

Las diferencias en el peso de semillas pueden ser causados por (16):

a) Manejo de la plantación durante la toma de datos.
b) Época de cosecha.
c) Estado fisiológico de la planta
d) Fertilidad del suelo.

Los clones que demostraron diferencias mayores de 10% son ICS-16, RIM-8 y RIM-75, los cuales parecen presentar una interacción específica genotipo-ambiente.

Cuando existan variedades que posean características específicas de calidad y tengan productividad inferior, para mantener la calidad tradicional, es necesario combinar estas características con aquellas de vigor y productividad de otras variedades portadoras de factores deseables, utilizando el procedimiento de mejoramiento específico para cada situación (14).
TABLA 8.
Promedios y coeficientes de variación de la variable peso seco (g) de semilla en 21 clones de cacao según EER y CATIE (3).

<table>
<thead>
<tr>
<th>Clon</th>
<th>Peso seco / semilla (g) EER</th>
<th>Coeficiente de variación</th>
<th>Peso seco/ semilla (g) CATIE</th>
<th>Coeficiente de variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 117</td>
<td>1.64</td>
<td>9.4</td>
<td>1.71</td>
<td>10.1</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>1.61</td>
<td>17.5</td>
<td>1.56</td>
<td>9.3</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>1.60</td>
<td>25.7</td>
<td>1.47</td>
<td>5.0</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>1.58</td>
<td>7.7</td>
<td>1.57</td>
<td>9.7</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>1.57</td>
<td>10.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>1.54</td>
<td>21.5</td>
<td>1.74</td>
<td>13.8</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>1.54</td>
<td>10.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>1.50</td>
<td>13.0</td>
<td>1.82</td>
<td>11.70</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>1.50</td>
<td>13.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>1.46</td>
<td>9.1</td>
<td>1.60</td>
<td>20.70</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>1.43</td>
<td>11.3</td>
<td>1.29</td>
<td>16.00</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>1.42</td>
<td>12.4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>1.38</td>
<td>5.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>1.36</td>
<td>11.4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>1.36</td>
<td>18.4</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>1.33</td>
<td>19.3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>1.31</td>
<td>18.6</td>
<td>1.45</td>
<td>14.30</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>1.24</td>
<td>22.5</td>
<td>1.47</td>
<td>11.80</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>1.17</td>
<td>14.5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>1.05</td>
<td>14.6</td>
<td>1.07</td>
<td>18.10</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>0.78</td>
<td>14.6</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
TABLA 9.- Relación entre peso seco y peso húmedo por semilla en 21 clones de cacao según EER y CATIE (3).

<table>
<thead>
<tr>
<th>Clones</th>
<th>Relación: peso seco/ peso húmedo de semilla EER</th>
<th>Relación: peso seco/ peso húmedo de semilla CATIE (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 117</td>
<td>0.73</td>
<td>0.67</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>0.70</td>
<td>0.64</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>0.68</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>0.68</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>0.67</td>
<td>0.63</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>0.67</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>0.66</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>0.66</td>
<td>0.59</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>0.65</td>
<td>0.62</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>0.65</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>0.64</td>
<td>0.62</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>0.64</td>
<td>*</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>0.64</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>0.63</td>
<td>*</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>0.62</td>
<td>0.59</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>0.62</td>
<td>*</td>
</tr>
</tbody>
</table>

* Clones no caracterizados por el CATIE.
3.7. **Color de cotiledones**

Los cotiledones maniествan variabilidad en cuanto a la intensidad de la coloración, debido al grado de presencia de las antocianinas. Como la pigmentación intensa es dominante, existe la tendencia de encontrar cotiledones púrpuras con mayor frecuencia. La variación en la intensidad de pigmentación se encuentra en cualquier población (14).

En el caso del cacao criollo, sus mazorcas presentan almendras blancas o ligeramente pigmentadas que puedan ser consumidas crudas por no ser amargas, esto se debe al bajo contenido de antocianinas y está correlacionado con el color (14).

Al evaluar los clones ICS y RIM se encontró que el color morado predomina en los tratamientos ICS-8 (81.5 %), ICS-47 (80.5 %), RIM-44 (80.2 %), ICS-6 (63.5 %) e ICS-39 (53.2%).

Estos clones pertenecen al grupo de los Trinitarios o sea representan descendencias de cruces Criollo x Forastero, en los cuales hay dominio en la presencia de antocianinas. El RIM-44 a pesar de pertenecer al grupo de los RIM, sus semillas no son típicas de este grupo por su alto contenido de antocianinas y tamaño pequeño de su semilla.

En cuanto a la presencia del color blanco, sobresalen los tratamientos RIM-55 (17 %), RIM-23 (13.5 %), RIM-78 (12 %) y RIM-8 (10 %) a pesar de la polinización cruzada. En condiciones de autofecundación, la estimación de este carácter hubiese sido más objetivo.
TABLA 10.- Presencia del color blanco y morado en 21 clones de cacao con características criollas y trinitarias

<table>
<thead>
<tr>
<th>Clon</th>
<th>% semilla blanca</th>
<th>Clon</th>
<th>% semilla morada</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 56</td>
<td>17.0</td>
<td>ICS - 8</td>
<td>81.5</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>13.5</td>
<td>ICS - 47</td>
<td>80.5</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>12.0</td>
<td>RIM - 44</td>
<td>80.2</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>10.0</td>
<td>ICS - 6</td>
<td>63.5</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>7.0</td>
<td>ICS - 39</td>
<td>53.2</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>6.7</td>
<td>RIM - 9</td>
<td>51.0</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>6.0</td>
<td>ICS - 84</td>
<td>50.0</td>
</tr>
<tr>
<td>RIM - 52</td>
<td>6.0</td>
<td>RIM - 52</td>
<td>44.2</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>5.7</td>
<td>ICS - 44</td>
<td>42.6</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>4.5</td>
<td>RIM - 48</td>
<td>42.0</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>4.5</td>
<td>RIM - 71</td>
<td>39.0</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>3.0</td>
<td>RIM - 8</td>
<td>35.5</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>2.7</td>
<td>RIM - 78</td>
<td>35.0</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>2.2</td>
<td>RIM - 117</td>
<td>30.7</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>1.2</td>
<td>RIM - 75</td>
<td>23.7</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>0.7</td>
<td>ICS - 1</td>
<td>22.7</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>0.5</td>
<td>ICS - 43</td>
<td>17.0</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>0.0</td>
<td>RIM - 15</td>
<td>13.5</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>0.0</td>
<td>RIM - 23</td>
<td>12.5</td>
</tr>
<tr>
<td>RIM - 15</td>
<td>0.0</td>
<td>RIM - 56</td>
<td>11.7</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>0.0</td>
<td>RIM - 43</td>
<td>6.25</td>
</tr>
</tbody>
</table>
3.8. Evaluación de la calidad del grano

3.8.1. Porcentaje de materia grasa

El porcentaje de grasa, que posee la semilla tiene importancia económica en la fabricación del chocolate y otros productos. Para la obtención de la manteca, una parte de las almendras es procesado separadamente, por consiguiente la grasa tiene su propio valor comercial, esto promueve buscar variedades que tengan un alto contenido de grasa con valores superiores a 56%. Para la Costa Rican Cocoa S.A. un contenido entre 53.4 - 54.6% de manteca es considerado de buena calidad (16).

La tabla 11 refleja los resultados del análisis de porcentaje de materia grasa y cascarilla practicado a 9 clones seleccionados como productivos (11). Se encontró que los clones ICS-6, RIM-48, RIM-52 e ICS-8 superan el 56% de materia grasa. Los clones RIM-44, ICS-39, RIM-9 y RIM-23 presentaron un contenido de grasa entre 50 y 53% o sea menor al rango deseado por la industria.

3.8.2. Porcentaje de cascarilla

Para la Costa Rican Cocoa S.A. los valores promedios oscilan entre 11.8 a 12.3% (16). De los clones analizados, solamente ICS-6 supera este rango con un 13.57% de cascarilla. Los promedios generales de porcentaje de cascarilla (10.85%) y grasa (55.35%) superan los rangos indicados por la Costa Rican Cocoa S.A.
Tabla 11. Análisis de materia grasa, cascarilla y porcentaje neto de manteca en 9 clones de cacao

<table>
<thead>
<tr>
<th>Clon</th>
<th>% de grasa</th>
<th>% cascarilla</th>
<th>porcentaje neto de manteca</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS-6</td>
<td>57.60</td>
<td>13.57</td>
<td>49.78</td>
</tr>
<tr>
<td>ICS-8</td>
<td>60.17</td>
<td>10.80</td>
<td>53.67</td>
</tr>
<tr>
<td>ICS-39</td>
<td>51.20</td>
<td>8.12</td>
<td>47.04</td>
</tr>
<tr>
<td>ICS-43</td>
<td>54.30</td>
<td>11.67</td>
<td>47.96</td>
</tr>
<tr>
<td>RIM-9</td>
<td>52.59</td>
<td>10.14</td>
<td>47.25</td>
</tr>
<tr>
<td>RIM-23</td>
<td>52.70</td>
<td>10.67</td>
<td>47.07</td>
</tr>
<tr>
<td>RIM-44</td>
<td>50.63</td>
<td>11.90</td>
<td>44.60</td>
</tr>
<tr>
<td>RIM-48</td>
<td>58.26</td>
<td>11.71</td>
<td>51.43</td>
</tr>
<tr>
<td>RIM-52</td>
<td>60.70</td>
<td>9.14</td>
<td>55.15</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>55.35</td>
<td>10.85</td>
<td>49.34</td>
</tr>
</tbody>
</table>

* Fuente: Laboratorio de Tecnología de Alimentos (LABAL)

3.8.3. Porcentaje neto de manteca

El clon de mayor porcentaje neto de manteca lo constituye RIM-52 con 55 %, seguido por ICS-8, RIM-48 y ICS-6. El valor más bajo fue registrado por el clon RIM 44 con 44.60 %.
3.9. **Tolerancia a Phytophthora palmivora (Butl.) Butler**

El 20% de pérdidas en la producción de cacao son causadas por *Phytophthora palmivora* (Butl.) Butler. El 80% de los productores de cacao en Nicaragua la consideran como la segunda enfermedad en importancia luego de *Monilia*. Fue reportado por primera vez en 1727 en la Isla de Trinidad, actualmente está distribuida en todo el mundo (15).

La mazorca negra produce pudriciones en el tronco, ramas, cojines florales, raíces y marchitez de brotes. Los mayores daños ocurren en las mazorcas que pueden ser atacadas en cualquier estado de desarrollo. La fuente de inóculo lo constituyen los esporangios y las zoosporas que se diseminan principalmente por el agua (15).

En comparación con las variedades amazónicas, los clones con características criollas son generalmente más susceptibles a las enfermedades fungosas, sin embargo la mayoría de los tratamientos tuvo una baja afectación por *P. palmivora*.

El clon RIM-52 presentó mayor daño con 19.5% de frutos afectados. El resto de clones tiene un promedio de 7.11% de frutos enfermos, excepto los clones RIM-9, RIM-75, ICS-43, RIM-78 e ICS -39 que no presentaron síntomas de daños del hongo. Según el CATIE (3), los clones ICS-1, ICS-6 ICS-43 e ICS-44 presentan tolerancia a *P. palmivora*, mientras que el RIM-48 está reportado como clon susceptible.
TABLA 12.-Porcentaje de afectación de *Phytophthora palmivora* (Butl) Buitner en 21 clones de cacao en la EER.

<table>
<thead>
<tr>
<th>Clon</th>
<th>No. frutos cosechados</th>
<th>No. de frutos enfermos</th>
<th>% de afectación</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIM - 52</td>
<td>118</td>
<td>23</td>
<td>19.5</td>
</tr>
<tr>
<td>ICS - 44</td>
<td>56</td>
<td>8</td>
<td>14.2</td>
</tr>
<tr>
<td>RIM - 56</td>
<td>56</td>
<td>8</td>
<td>13.7</td>
</tr>
<tr>
<td>RIM - 44</td>
<td>133</td>
<td>10</td>
<td>13.3</td>
</tr>
<tr>
<td>RIM - 23</td>
<td>63</td>
<td>7</td>
<td>11.0</td>
</tr>
<tr>
<td>ICS - 47</td>
<td>68</td>
<td>14</td>
<td>9.3</td>
</tr>
<tr>
<td>RIM - 117</td>
<td>78</td>
<td>11</td>
<td>8.5</td>
</tr>
<tr>
<td>RIM - 71</td>
<td>48</td>
<td>4</td>
<td>8.3</td>
</tr>
<tr>
<td>RIM - 48</td>
<td>62</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>RIM - 43</td>
<td>56</td>
<td>4</td>
<td>7.1</td>
</tr>
<tr>
<td>ICS - 6</td>
<td>40</td>
<td>9</td>
<td>4.3</td>
</tr>
<tr>
<td>RIM - 8</td>
<td>62</td>
<td>7</td>
<td>4.3</td>
</tr>
<tr>
<td>ICS - 84</td>
<td>42</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>ICS - 8</td>
<td>40</td>
<td>6</td>
<td>2.2</td>
</tr>
<tr>
<td>ICS - 16</td>
<td>43</td>
<td>4</td>
<td>1.68</td>
</tr>
<tr>
<td>RIM - 9</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIM - 75</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RIM - 78</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICS - 39</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICS - 43</td>
<td>88</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Se determinó que en las condiciones de la Estación Experimental El Recreo, la mayoría de los clones poseen un efecto de escape natural a esta enfermedad debido a que la producción de mazorcas se concentra en los meses de menor precipitación, cuando las condiciones ecológicas son desfavorables para el desarrollo del hongo.

3.10. **Tipo de compatibilidad**

Según la literatura, los clones RIM son autocompatibles, mientras que los clones ICS-43, ICS-39, ICS-47 y ICS-84 se reportan como autoincompatibles (3,6). Sin embargo, la prueba de campo, efectuada en cinco clones ICS, demostró que solamente ICS-84 resultó autoincompatible con 3.7% de prendimiento. Los cuatro clones restantes obtuvieron un porcentaje de prendimiento mayor de lo esperado (40%).

TABLA 12.- Evaluación del tipo de compatibilidad en cinco clones de cacao. EER. 1997.

<table>
<thead>
<tr>
<th>N/O</th>
<th>Clon</th>
<th>No. de flores polinizadas</th>
<th>No. de flores prendidas</th>
<th>Porcentaje prendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ICS 16</td>
<td>58</td>
<td>52</td>
<td>89.6</td>
</tr>
<tr>
<td>2.</td>
<td>ICS 43</td>
<td>22</td>
<td>12</td>
<td>54.5</td>
</tr>
<tr>
<td>3.</td>
<td>ICS 39</td>
<td>60</td>
<td>37</td>
<td>61.7</td>
</tr>
<tr>
<td>4.</td>
<td>ICS 47</td>
<td>32</td>
<td>38</td>
<td>84.2</td>
</tr>
<tr>
<td>5.</td>
<td>ICS 84</td>
<td>27</td>
<td>1</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Según Cope (5) los clones ICS autoincompatibles poseen la particularidad de presentar a la vez un tipo de interincompatibilidad cuando se cruzan entre sí. Los estudios con 14 clones ICS autoincompatibles revelaron que tanto durante la autopolinización como en la polinización cruzada entre ellos, un 25% de los óvulos contenidos en un ovario no se fecundan lo que provoca la caída de la flor polinizada. Este fenómeno no se ha encontrado cuando se cruzan clones autoincompatibles de tipo amazónico entre sí o cuando se cruzan clones amazónicos autoincompatibles con clones ICS autoincompatibles.

La interpretación genética de este fenómeno revela que los gametos que no se fusionan son aquellos que portan el mismo alelo dominante, según la relación de Knight y Rogers (10):

\[S_0 = S_1 > S_2 = S_3 > S_5 \]

En la práctica esto significa que el establecimiento de plantaciones monoclonales de selecciones autoincompatibles y también las mezclas de diferentes clones autoincompatibles del tipo ICS deben ser evitada.
IV. CONCLUSIONES

1.- Los clones ICS 16, RIM-9, ICS-8, ICS-6 e ICS-39 se destacan por su bajo índice de mazorca.

2.- Los clones criollos RIM-52, RIM-9, RIM-44 y RIM-15 presentaron mayor productividad comparado con los tratamientos restantes, sin embargo el peso seco de semilla del RIM-44 es menor a 1 g, límite inferior establecido por la industria chocolatera.

3.- Con excepción de los clones RIM-44 e ICS-43, los genotipos estudiados presentaron un alto peso seco de semilla, característica de genotipos criollos y trinitarios.

4.- Los clones con más características criollas en cuanto a la presencia del color blanco en los cotiledones son RIM-56, RIM-23, RIM-78 y RIM-8.

5.- El mayor rendimiento industrial, tomando en cuenta el porcentaje de cascarilla y materia grasa poseen los clones RIM-52, ICS-8, RIM-48 e ICS-6.

6.- Los clones estudiados demostraron un efecto de escape natural a Phytophthora palmivora (But1.) Bulter, debido a su época de producción, exceptuando al clon RIM-52 que demostró susceptibilidad a este hongo.

7.- Solamente el clon ICS-84 fue confirmado como autoincompatible.

9.- Se detectó que existe confusión en cuanto a la identificación del clon ICS 1 en el Banco de Germoplasma de El Recreo.
V. RECOMENDACIONES

1.- Establecer una validación clonal con los clones seleccionados como promisorio para determinar su rendimiento potencial bajo otras condiciones agroclimáticas.

2.- Mejorar las características de los clones seleccionados mediante polinización controladas con clones altamente productivos de origen altoamazónico (POUND-7, IMC-67) y evaluar el efecto de heterosis en la progenie.

3.- No establecer plantaciones monoclonales con ICS-84, debido a su autoincompatibilidad.

4.- Reconfirmar la identidad de los clones ICS a través del método del análisis del ADN en conjunto con la Cocoa Research Unit (CRU) de la Universidad of the West Indies, Trinidad & Tobago.
VI. BIBLIOGRAFÍA

11. -LABAL. 1994. Laboratorio de Análisis de Alimento. MEDE.

VII.- ANEXO
Tabla 13: Resumen de las Variables Evaluadas

<table>
<thead>
<tr>
<th>Nombre de Acceso</th>
<th>Nombre de Origen</th>
<th>Año y Lugar de Origen</th>
<th>Indice de Producción</th>
<th>Producción</th>
<th>Máximo num. de Semilla</th>
<th>Peso de Semilla</th>
<th>Peso seco de Semilla</th>
<th>Relación</th>
<th>Número de Semilla</th>
<th>Calidad de Color</th>
<th>Calidad de Calidad</th>
<th>Calidad de Resistencia</th>
<th>% de Hidratación</th>
<th>% de Nitrato</th>
<th>% de Osmolalidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTAH - 9</td>
<td>MEXICO</td>
<td>1994</td>
<td>15.8</td>
<td>1.58</td>
<td>47</td>
<td>2.29</td>
<td>6.7</td>
<td>1.58</td>
<td>7.3</td>
<td>0.09</td>
<td>34.32</td>
<td>28.2</td>
<td>0.71</td>
<td>7.0</td>
<td>51.8</td>
</tr>
<tr>
<td>FTAH - 75</td>
<td>ESTACION</td>
<td>25.23</td>
<td>1.24</td>
<td>4.7</td>
<td>1.41</td>
<td>2.30</td>
<td>5.7</td>
<td>1.24</td>
<td>22.5</td>
<td>0.05</td>
<td>31.82</td>
<td>27.8</td>
<td>0.84</td>
<td>2.2</td>
<td>22.7</td>
</tr>
<tr>
<td>FTAH - 48</td>
<td>EXPERIEN.</td>
<td>23.16</td>
<td>1.38</td>
<td>4.7</td>
<td>2.24</td>
<td>2.04</td>
<td>4.7</td>
<td>2.24</td>
<td>15.2</td>
<td>0.07</td>
<td>31.12</td>
<td>28.8</td>
<td>0.84</td>
<td>6.7</td>
<td>42.0</td>
</tr>
<tr>
<td>FTAH - 71</td>
<td>RECREO.</td>
<td>22.70</td>
<td>1.31</td>
<td>4.4</td>
<td>1.87</td>
<td>1.97</td>
<td>7.4</td>
<td>1.31</td>
<td>18.8</td>
<td>0.06</td>
<td>22.27</td>
<td>28.3</td>
<td>0.73</td>
<td>4.5</td>
<td>29.0</td>
</tr>
<tr>
<td>FTAH - 78</td>
<td></td>
<td>28.21</td>
<td>1.43</td>
<td>4.2</td>
<td>2.11</td>
<td>2.11</td>
<td>12.4</td>
<td>1.43</td>
<td>11.3</td>
<td>0.87</td>
<td>28.21</td>
<td></td>
<td>0.90</td>
<td>12.0</td>
<td>35.0</td>
</tr>
<tr>
<td>FTAH - 44</td>
<td></td>
<td>41.30</td>
<td>0.78</td>
<td>5.2</td>
<td>1.12</td>
<td>1.12</td>
<td>10.3</td>
<td>0.78</td>
<td>14.6</td>
<td>0.04</td>
<td>31.15</td>
<td>43.5</td>
<td>0.59</td>
<td>0.5</td>
<td>80.2</td>
</tr>
<tr>
<td>FTAH - 55</td>
<td></td>
<td>23.14</td>
<td>1.33</td>
<td>7.0</td>
<td>1.94</td>
<td>1.94</td>
<td>18.4</td>
<td>1.33</td>
<td>19.3</td>
<td>0.08</td>
<td>32.00</td>
<td>23.8</td>
<td>0.99</td>
<td>0.0</td>
<td>13.8</td>
</tr>
<tr>
<td>FTAH - 50</td>
<td></td>
<td>25.58</td>
<td>1.42</td>
<td>5.1</td>
<td>2.12</td>
<td>2.12</td>
<td>10.8</td>
<td>1.42</td>
<td>12.4</td>
<td>0.06</td>
<td>27.40</td>
<td>33.0</td>
<td>0.88</td>
<td>8.0</td>
<td>64.2</td>
</tr>
<tr>
<td>FTAH - 56</td>
<td></td>
<td>27.56</td>
<td>1.50</td>
<td>5.8</td>
<td>2.31</td>
<td>2.31</td>
<td>11.5</td>
<td>1.50</td>
<td>13.2</td>
<td>0.04</td>
<td>30.00</td>
<td>35.5</td>
<td>0.55</td>
<td>17.0</td>
<td>11.7</td>
</tr>
<tr>
<td>FTAH - 117</td>
<td></td>
<td>21.23</td>
<td>1.84</td>
<td>4.3</td>
<td>2.21</td>
<td>2.21</td>
<td>8.4</td>
<td>1.84</td>
<td>8.4</td>
<td>0.73</td>
<td>28.80</td>
<td>39.5</td>
<td>0.80</td>
<td>8.0</td>
<td>30.7</td>
</tr>
<tr>
<td>FTAH - 43</td>
<td></td>
<td>28.09</td>
<td>1.17</td>
<td>4.0</td>
<td>1.80</td>
<td>1.80</td>
<td>15.2</td>
<td>1.17</td>
<td>14.5</td>
<td>0.05</td>
<td>32.57</td>
<td>30.7</td>
<td>0.70</td>
<td>3.0</td>
<td>6.3</td>
</tr>
<tr>
<td>FTAH - 6</td>
<td></td>
<td>20.32</td>
<td>1.50</td>
<td>4.5</td>
<td>2.19</td>
<td>2.19</td>
<td>16.8</td>
<td>1.50</td>
<td>13.0</td>
<td>0.08</td>
<td>32.77</td>
<td>30.0</td>
<td>0.73</td>
<td>10.0</td>
<td>35.5</td>
</tr>
<tr>
<td>FTAH - 23</td>
<td></td>
<td>26.66</td>
<td>1.54</td>
<td>3.5</td>
<td>2.23</td>
<td>2.23</td>
<td>10.1</td>
<td>1.54</td>
<td>11.5</td>
<td>0.08</td>
<td>24.85</td>
<td>41.8</td>
<td>0.55</td>
<td>13.5</td>
<td>12.8</td>
</tr>
<tr>
<td>CSH - 43</td>
<td>TRINIDAD</td>
<td>27.37</td>
<td>1.08</td>
<td>3.6</td>
<td>1.82</td>
<td>1.82</td>
<td>14.0</td>
<td>1.06</td>
<td>14.8</td>
<td>0.04</td>
<td>34.52</td>
<td>17.9</td>
<td>0.78</td>
<td>2.7</td>
<td>13.0</td>
</tr>
<tr>
<td>CSH - 30</td>
<td></td>
<td>19.42</td>
<td>1.60</td>
<td>3.6</td>
<td>2.29</td>
<td>2.29</td>
<td>7.2</td>
<td>1.60</td>
<td>23.7</td>
<td>0.70</td>
<td>32.05</td>
<td>33.1</td>
<td>0.93</td>
<td>4.5</td>
<td>53.2</td>
</tr>
<tr>
<td>CSH - 44</td>
<td></td>
<td>22.10</td>
<td>1.61</td>
<td>4.3</td>
<td>2.32</td>
<td>2.32</td>
<td>15.3</td>
<td>1.61</td>
<td>17.8</td>
<td>0.07</td>
<td>36.22</td>
<td>38.0</td>
<td>0.04</td>
<td>8.7</td>
<td>42.6</td>
</tr>
<tr>
<td>CSH - 47</td>
<td></td>
<td>20.81</td>
<td>1.30</td>
<td>4.1</td>
<td>1.87</td>
<td>1.87</td>
<td>10.1</td>
<td>1.30</td>
<td>11.4</td>
<td>0.06</td>
<td>35.75</td>
<td>12.8</td>
<td>0.87</td>
<td>0.0</td>
<td>80.5</td>
</tr>
<tr>
<td>CSH - 6</td>
<td></td>
<td>18.81</td>
<td>1.57</td>
<td>4.8</td>
<td>2.49</td>
<td>2.49</td>
<td>7.9</td>
<td>1.57</td>
<td>10.2</td>
<td>0.08</td>
<td>34.20</td>
<td>16.1</td>
<td>0.74</td>
<td>0.7</td>
<td>81.5</td>
</tr>
<tr>
<td>CSH - 50</td>
<td></td>
<td>18.81</td>
<td>1.48</td>
<td>4.7</td>
<td>2.34</td>
<td>2.34</td>
<td>8.1</td>
<td>1.48</td>
<td>8.1</td>
<td>0.02</td>
<td>38.27</td>
<td>19.5</td>
<td>0.77</td>
<td>1.2</td>
<td>63.5</td>
</tr>
<tr>
<td>CSH - 84</td>
<td></td>
<td>27.80</td>
<td>1.38</td>
<td>4.0</td>
<td>2.20</td>
<td>2.20</td>
<td>16.4</td>
<td>1.38</td>
<td>18.4</td>
<td>0.02</td>
<td>26.78</td>
<td></td>
<td>0.85</td>
<td>4.5</td>
<td>35.0</td>
</tr>
<tr>
<td>CSH - 16</td>
<td></td>
<td>18.81</td>
<td>1.54</td>
<td>4.7</td>
<td>2.45</td>
<td>2.45</td>
<td>12.1</td>
<td>1.54</td>
<td>21.3</td>
<td>0.02</td>
<td>32.75</td>
<td></td>
<td>0.78</td>
<td>0.0</td>
<td>87.0</td>
</tr>
</tbody>
</table>

LEYENDAS:
* : AUTOCOMPATIBLE
O : AUTOINCOMPATIBLE
S : SUSCEPTIBLE
T : TOLERANTE
* : NO EVALUADO
RIM 43

RIM 43

....
ICS 16

ICS 39
ICS 47

ICS 84