INSTITUTO SUPERIOR DE CIENCIAS AGROPECUARIAS
ESCUELA DE PRODUCCION VEGETAL

EVALUACION COMPARATIVA DE CUATRO INSECTICIDAS Y
UNA MEZCLA LANRATE + DECIS PARA EL CONTROL DE
LARVAS DE Heliothis spp Keiferia lycoperdicella y
ADULTOS DE Bemisia tabasi EN EL CULTIVO DEL TOMATE

TESIS

POR

MAYRA DEL CARMEN CANO PALLAIS

ASESOR : M.S. SAMUEL AVENDANO

MANAGUA, NICARAGUA, C.A.
1986
DEDICATORIA

A MI MADRE : MARIA TERESA PELLAIS

A MIS HERMANOS : LUVY
 ILEANA
 JAVIER
 JORGE

A MIS HIJOS : CLAUDIA MARGARITA
 GUSTAVO JAVIER

A MIS VERDADEROS AMIGOS
AGRADECIMIENTO

Manifiesto mi sincero agradecimiento a todas aquellas personas que de una u otra forma estuvieron involucradas para la culminación de este trabajo y de manera muy especial a: Mi madre por el apoyo moral y material para la culminación de dicho estudio.

Samuel Avendaño por su infatigable y excelente asesoría en el trabajo.

Sally Gladstone quien sin su ayuda no hubiese sido posible terminar el estudio.

Byron Schultz por el análisis estadístico de los datos

Al ISCA por su apoyo material y de transporte

Al personal de la E.E.R.G.U.S. por su apoyo financiero y técnico brindado para la realización del estudio.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATORIA</td>
<td>i</td>
</tr>
<tr>
<td>AGRADECIMIENTO</td>
<td>ii</td>
</tr>
<tr>
<td>CONTENIDO</td>
<td>iii</td>
</tr>
<tr>
<td>INDICE DE CUADROS</td>
<td>iv</td>
</tr>
<tr>
<td>INDICE DE FIGURAS</td>
<td>v</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>vi</td>
</tr>
<tr>
<td>I. INTRODUCCION</td>
<td>1</td>
</tr>
<tr>
<td>II OBJETIVOS</td>
<td>3</td>
</tr>
<tr>
<td>III MATERIALES Y METODOS</td>
<td>4</td>
</tr>
<tr>
<td>IV. REVISION DE LITERATURA</td>
<td>7</td>
</tr>
<tr>
<td>V. RESULTADOS</td>
<td>14</td>
</tr>
<tr>
<td>VI. DISCUSION</td>
<td>24</td>
</tr>
<tr>
<td>VII. CONCLUSIONES</td>
<td>27</td>
</tr>
<tr>
<td>VI RECOMENDACIONES</td>
<td>28</td>
</tr>
<tr>
<td>IX. LITERATURA CITADA</td>
<td>29</td>
</tr>
<tr>
<td>X. ANEXOS</td>
<td>32</td>
</tr>
<tr>
<td>Cuadro No.</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Tratamientos aplicados para el control de larvas de helliothis spp. Keiferia lycopersicella y adultos de bemsia tabci.</td>
</tr>
<tr>
<td>2.</td>
<td>Numero de larvas de Helliothis spp, Keiferia lycopersicella y adultos de bemsia tabaci encontrados en el follaje de tomate, Sebaco, Matagalpa. 1984.</td>
</tr>
<tr>
<td>3.</td>
<td>Numero de frutos dañados por larvas de Helliothis spp. y Keiferia lycopersicella en tomate. Sebaco, Matagalpa.1984.</td>
</tr>
<tr>
<td>4.</td>
<td>Porcentaje de frutos dañados por larvas de Hellithis spp. y Keiferia lycopersicella en tomate. Sebaco, Matagalpa.1984.</td>
</tr>
<tr>
<td>6.</td>
<td>Analisis de varianza del numero de larvas de Keiferia lycopersicella encontradas en el follaje de tomate. Sebaco, Matagalpa. 1984.</td>
</tr>
<tr>
<td>7.</td>
<td>Analisis de varianza del numero de frutos dañados por Keiferia lycopersicella encontradas en el follaje de tomate. Sebaco, Matagalpa .1984.</td>
</tr>
<tr>
<td>8.</td>
<td>Analisis de varianza para el numero de adultos de Bemisia Tabaci en el follaje de tomate. Sebaco, Matagalpa.1984.</td>
</tr>
<tr>
<td>9.</td>
<td>Analisis del porcentaje de frutos dañados por Helliothis spp y Keiferia lycopersicella deurante el ultimo recuento (85 DDS) en tomate. Sebaco, Matagalpa. 1984.</td>
</tr>
<tr>
<td>Figura No.</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>1.1</td>
<td>Numero de larvas de Helliiothis spp. en el follaje antes y después de la aplicación de tratamientos. Sebaco, Matagalpa. 1984.</td>
</tr>
<tr>
<td>2.2</td>
<td>Numero de frutos dañados por larvas de Helliiothis spp. antes y después de la aplicación de tratamientos. Sebaco, Matagalpa. 1984.</td>
</tr>
<tr>
<td>3.3</td>
<td>Numero de frutos dañados por Keiferia lycopericella antes y después de la aplicación de tratamientos. Sebaco, Matagalpa. 1984.</td>
</tr>
</tbody>
</table>
El presente estudio se realizó en la Estación Experimental Raúl González del Valle de Sábaco de la D.G.A-MIDINRA entre los meses de febrero y mayo de 1984. La variedad utilizada fue UC-82, para determinar en ella el efecto de cuatro insecticidas y una mezcla Lannate + Decis en el control de plagas de tomate industrial. Se estudiaron los siguientes insecticidas Elcar 20 PIB PM, Lannate 90 PM, Decis 2.5 EC, Lannate 90 PM + Decis 2.5 EC y Cytrolane 250 E más un testigo (sin aplicación de insecticida). Para el análisis estadístico de los datos se usó parcelas divididas con cinco repeticiones. Los resultados obtenidos revelaron diferencias significativas únicamente entre los diferentes insecticidas en relación con el testigo sobre el número de larvas de Heliotis spp y Kleferia lycopersicella encontrados en el follaje lo mismo que para el número de frutos dañados por estas mismas plagas. En el caso del porcentaje de frutos dañados por Heliotis spp y K. lycopersicella se detectó diferencia significativa en los tratamientos Lannate + Decis (102 gr/mz + 240 cc/mz) y Decis (540 cc/mz) en relación con el testigo, siendo los otros tratamientos insecticidas significativamente iguales al testigo. Para B. tabaci los resultados no detectaron diferencias significativas entre los insecticidas y el testigo.
INTRODUCCION

En Nicaragua el tomate (Lycopersicum esculentum Mill) es una de las hortalizas que ocupa un lugar importante en el consumo nacional.

En el país la región más importante en la producción de tomate es la región sexta; representando el 39% del área nacional y el 40% de la producción en dicha región. El valle de Sebaco contribuye mayormente en la producción hortícola y principalmente en la del tomate. En 1981 el consumo industrial hortícola fue de 7,900 toneladas de las cuales 6700 toneladas fueron producidas en el valle de Sebaco.

Dado el potencial hortícola de este valle en 1982 fue impulsado el proyecto para el establecimiento de una planta procesadora de conservas vegetales, la que empezara a producir en 1988. Para satisfacer las demandas de materia prima de esta planta se proyecta cultivar aproximadamente 1,000 hectáreas, rotadas para tener una producción de 55,000 toneladas de hortalizas.

En la actualidad los sistemas de siembra y el manejo del cultivo seguido por los productores son adaptaciones tecnológicas de otros países que se han adaptado como norma de producción. De acuerdo con avendaño (1984) los rendimientos comerciales actuales del cultivo del tomate en el Valle de Sebaco están por debajo del potencial agroecológico de dicha zona. Dicho autor afirma que la disminución de los rendimientos inciden varios factores, sobresaliendo el inadecuado control fitosanitario y bajo nivel de agrotecnia.
De acuerdo con vallecillo (1986) en los últimos años ha sido notorio en las áreas tomateras del valle de Sebaco una intensificación en el número de plagas y en la severidad del daño que ocasionan el cultivo. Observaciones de campo revelan que las larvas de heliiothís spp. y spodoptera spp. son comunes atacando frutos en la planta de la variedad UC- 82 a partir de los 65 días de edad del cultivo. En cambio las larvas de Keiferia lycopersicellwaaslm han sido encontradas minando las hojas del tomate a partir de los 50 días de edad del cultivo. En cuanto bemisia tabaci genn es común observar poblaciones en cualquier etapa fenológica del cultivo.

Rosset y Vandermeer (1984) afirman que en las regiones tomateras como son El Valle de Sebaco y el área de Granada se están haciendo aplicaciones regulares de insecticidas cada dos, cuatro y ocho días para el control de las plagas, lo que mantiene el alto costo de producción y seguramente provoca problemas ecológicos.

Por lo antes mencionado pretendemos comprobar nuestras hipótesis que los insecticidas Decis, Lannate, Cytrolane y la combinación Lannate+Decis, pueden influir de diferente manera sobre las poblaciones de larvas de Heliiothís spp., Keiferia lycopersicella y adultos de bemisia tabaci en poblaciones de tomate.
OBJETIVOS

1. Determinar el efecto de los insecticidas Decis, Lannate, Elcar, Cytrolane y la combinación Lannate + Decis sobre poblaciones de larvas de *Heliothis spp*, *Keleria lycopericella* y adultos de *Bemisia tabaci* en el cultivo del tomate.

2. Determinar el efecto de estos insecticidas sobre el número de frutos dañados al final de las aplicaciones.
MATERIALES Y METODOS

Este estudio se realizó en terrenos de la estación experimental Raul Gonzales de l valle de sebaco departamento de matagalpa región VI, la siembra se realizó el 14 de febrero 1984 en forma directa utilizando 1.6 kg/ha de semilla de la variedad de tomate industrial UC-82.

Previo a la siembra se preparó y desinfectó el suelo utilizando una mezcla de Furadan 5G y Terraclor SXG a razón de 38 kg/ha + 20k/ha. Al momento de la siembra se fertilizó el suelo con una tercera parte del nitrogeno, todo el fosforo y potasio, utilizando una formula 12-30-10. Las dos terceras partes del nitrogeno se aplicaron a los 25 y 40 días después de la siembra, utilizando como fuente nitrogenada Urea 46% alcanzando con esta fertilización niveles equivalentes a 133-116 y 38 kg/ha de N, P, y K respectivamente. A los 20 días después de la germinación se realizó el raleo dejando una planta cada 0.2 m equivalente a 50 plantas por parcela.

En dicho estudio se evaluaron los insecticidas Elcar, Lannate, Decis, Lannate + Decis y Cytrolane con tres dosis. Las dosis usadas fueron: Dosis comercial 40% menor que comercial y 40% mayor más un testigo o sea sin aplicación de insecticidas. La determinación del 40 % mayor y menor más un testigo o sea sin aplicación de insecticidas. La determinacion del 40 % mayor y menor que la comercial se hizo en base a recomendaciones metodologicas del departamento de pesticidas agrícolas de la dirección de sanidad vegetal del MIDINRA.

Los dieciséis tratamientos evaluados se distribuyeron en bloques completos al azar con cinco repeticiones. La unidad experimental fue de un cantero de 1.6 m de ancho por 5 m de largo. En cada cantero se distribuyeron dos hileras de tomate separadas a 0.4 m y 0.2 m entre golpe de semilla.
Los tratamientos se aplicaron a los 69, 75 y 81 días después de la siembra (DDS), previo recuento, para la aplicación de los insecticidas se utilizó una bomba de motor con capacidad de 12 litros. Para evaluar el efecto de los tratamientos aplicados sobre plagas se hicieron recuentos visuales en muestras aleatorias, tomando como muestra el 20% de plantas, en cada parcela experimental. Lo que representó un total de 10 plantas.

El nivel de infestación de las plagas se determinó mediante recuentos los que se iniciaron a los 64 días después de la siembra.

Debido a que el primer recuento no reveló incidencia de plagas, las aplicaciones se iniciaron hasta después del segundo recuento el que reveló la incidencia de plagas. se realizaron un total de tres aplicaciones con un intervalo de seis días. Para determinar el efecto de los tratamientos en las tres aplicaciones se contabilizaron plagas antes y después de cada una de las aplicaciones con intervalos de seis días. Para determinar el efecto de los tratamientos, en las tres aplicaciones se contabilizaron plagas antes y después de cada una de las aplicaciones. Obteniéndose un total de 9 recuentos correspondientes a los 64, 69, 70, 72, 75, 77, 82 y 85 DDS. El efecto de los tratamientos se evaluó con los últimos 7 recuentos, en los que se contabilizó el número de larvas de heliothis spp, Keiferia lycopersicella y adultos de B. tabaci, encontrados en el follaje. Además se contó el número de frutos dañados por estas mismas larvas.

Los datos obtenidos en los últimos 7 recuentos de las diferentes variables estudiadas fueron sometidas al análisis estadístico. Consistiendo en un análisis de varianza de parcelas divididas considerando los pesticidas en las parcelas grandes y las fechas de recuentos como sub parcelas.
Cuadro 1. Tratamientos aplicados para el control de larvas de Heliothis ssp, Keiferia lycopeicella Walsm y adultos de Bemicia tabaci Gennadius.

<table>
<thead>
<tr>
<th>Nombre de los pesticidas</th>
<th>Formulación</th>
<th>Dosis/mz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial</td>
<td>Técnico</td>
<td>%IA</td>
</tr>
<tr>
<td>ELCAR</td>
<td>Virus de la nucleopiledrosis de Heliothis.</td>
<td>20 PIB** PM</td>
</tr>
<tr>
<td>LANNATE</td>
<td>Metomyl</td>
<td>90</td>
</tr>
<tr>
<td>DECIS</td>
<td>Decametrin</td>
<td>2.5</td>
</tr>
<tr>
<td>LANNATE</td>
<td>Metomyl +</td>
<td>90</td>
</tr>
<tr>
<td>+ DECIS</td>
<td>Decametrin</td>
<td>2.5 E</td>
</tr>
<tr>
<td>CYTROLANE</td>
<td>Mefosfolán</td>
<td>250:50 E</td>
</tr>
</tbody>
</table>

TESTIGO

(PM) Polvo mojable
(PS) Polvo soluble
(EC) Emulsión concentrada
(E) Emulsión
** Inclusiones poliedrías
Aspectos generales del cultivo

Según Rossel y Vandermeer en el cultivo del tomate es conveniente estudiar las plagas de acuerdo a la etapa de crecimiento de la planta ya que el daño que causan y la capacidad de la planta a tolerar dicho daño varía según la etapa fenológica del cultivo. En este sentido dividen el cultivo en tres etapas a) estado de plantula en esta etapa la plaga más importante son Diabrotica spp. y B. tabaci B) Estado de crecimiento con B. tabaci, Lyriomiza sativa y Keiferia lycopersicella como las plagas más importantes, c) Etapa de floración y fructificación en esta etapa sobresalen plagas como Heliothis spp, Spodoptera spp y en menor grado K. lycopersicella.

Saunders cita 175 especies de insectos como plagas del tomate en América Central, sin embargo afirman que las especies que más preocupan al productor son Heliothis zea y K. lycopersicella empleándose indistintamente insecticidas como Lannate 90 PM, Monitor 600 y Decis.

Características generales de las plagas.

De acuerdo al manual de control integrado de plagas de tomate de la Universidad de California, las larvas de Heliothis spp desarrollan cinco instares larvales alcanzando en su último instar hasta 5 cm de longitud. Dichas larvas presentan colores variados desde amarillo cremoso hasta café o negruzcas. La parte dorsal de las larvas presentan una serie de tubérculos que sirven para diferenciarlas de los primeros instares de K. lycopersicella. Las larvas penetran al fruto.
usualmente en el extremo de botón floral. Son canívales por lo que raramente no entran más de una larva por fruto. Usualmente la larva completa su desarrollo dentro del fruto.

Antes de que se aparezcan los frutos, ellas se alimentan de hojas terminales y pueden entrar al interior y barrenar botones florales. Andrews (1984) y Korytkowski (1985) concuerdan que el principal daño lo causan las larvas dado que éstas se alimentan preferiblemente de frutos verdes. Las larvas barrenan el fruto formando una cavidad irregular y húmeda contaminada de heces y exuvias. Estas perforaciones usualmente se infectan de hongos ocasionando que los frutos se pudran antes de cosecharlos. Las larvas de *Heliothis* spp usualmente no dañan frutos maduros.

Según King y Saunders (1984) las larvas de *Keiferia lycopericella* walsm (gusano alfiler) desarrollan cuatro instares; al inicio son verde pálidas o rosadas y en sus últimos instares se tornan grisáceas con manchas púrpuras. Su último estadío larvas alcanza hasta 6 mm de longitud. Estos mismos autores afirman que en los dos primeros instares las larvas minan las hojas haciendo una galería, posteriormente enrollan la hoja sobre la mina donde se alimentan envolviéndose en una especie de seda o minan los frutos generalmente por debajo del cálliz dejando un agujero característico en forma de alfiler en la entrada de la mina. Esto último puede causar pudrición que desechen al fruto o afecten la calidad del mismo. Las larvas pueden dañar todo tipo de fruto pudiendo encontrarse varias larvas en un mismo fruto.

Schmutter (1977) señala que las ninñas de *Bemisia tabaci* Genn (mosca blanca) son verde blanquecinas e inmóviles. Dichas ninñas se adhieren a las hojas
Succionando la savia de las plantas. Los adultos son blancos y amarillentos y tienen capacidad de moverse por sí solas o ser transportadas por el viento. Rosset (1986) destaca que existe cierta confusión en la literatura respecto a que si B. tabaci completa su ciclo de vida en la planta de tomate o si solo los adultos se alimentan de la planta. En algunos países del medio oeste, menciona Rosset (1986) se han producido huevos y ninfas en plantas de tomate, mientras que en Nicaragua solamente se han encontrado adultos.

Dichos adultos están directamente involucrados en la transmisión viral, el supuesto mecanismo por el cual B. tabaci afecta el rendimiento del cultivo del tomate.

Características generales de los pesticidas.

De acuerdo al manual de American Cynamid Company (1972) Cytrolane con el nombre generico de Mefolfolan en un insecticida organofosforado cuyo grado tecnico es un líquido concentrado adecuado para la preparacion de concentrados emulsionables y granulos. Formulaciones emulsionables tienen una DL50 entre 20 y 25 mg/kg de peso corporal. Es eficaz tanto para insectos chupadores como para insectos masticadores. La actividad insecticida se logra por contacto directo y por ingestión ya sea directamente de la superficie foliar o a travez de propiedades sistemicas en la planta. Laccion sistematica sigue a la absorcion del insecticida a travez de las raices de la planta o a travez del tallo o penetracion foliar. King y Saunders menciona que la ultima aplicacion debe ser a los 28 dias antes de la cosecha.

Segun boletin informativo DUPONT (1967) Lannate es un insecticida carbamato, cuyo grado tecnico es polvo soluble que puede.
ser formulado al 25 y 90% así como formulaciones granulares tiene un DL50 de 190 mg/kg de peso. Su actividad insecticida se logra mediante contacto. Pueda convertirse en no tóxico a los insectos en una semana mas o menos después de la aplicación. A nivel de campo el máximo control puede obtenerse en los primeros días después de la aplicación. Es tóxico a huevos, larvas, ninñas de muchos insectos, por lo que las aplicaciones deben dirigirse a cubrir estadios larvarios de los insectos.

Según King y Saunders (1984) Decis con el nombre genérico de decametrina, es un insecticida piretroide que actúa por contacto. Se formula como emulsión concentrada con una DL50 de 51 mg/kg de peso y con un intervalo entre la última aplicación y la cosecha de 7 días.

De acuerdo a la incorporación de SANDOZ INC Crop Protection (1972) Elcar cuyo nombre genérico es virus de la poliedrosis nuclear de Heliothis zea (VPN) es un insecticida microbial. Su formulación en 4 billones de POB/gr de material preparado. Es un insecticida no tóxico. La acción insecticida se logra por ingestión, siendo mayor su efectividad cuando se aplica a instares larvais tempranos. Sin embargo, aplicaciones a instares larvais tardíos inhiben la transformaciones de estos adultos reproductores. Una vez que es ingerido el VPN la cápsula proteica envolvente del ADN viral se disuelve unos segundos después que ha encontrado al intestino del insecto dando origen a viriones que pasan a través del revestimiento de las células epiteliales del intestino medio entrando al citoplasma y núcleo de las células susceptibles. Virtualmente todas las células de los tejidos son susceptibles a la enfermedad viral.
Poco después de la ingestión la hemolinfa clara se torna turbia en donde se pueden detectar cuerpos poliedricos. Muerte de larvas pequeñas puede ocurrir dentro de tres días después de la ingestión y hasta en cinco días puede ocurrir la muerte de larvas grandes con dosis comercial (240 gr/mz)

Resultados obtenidos en algunas investigaciones.

Young y Yearian (1974) con el propósito de estudiar la presencia de Elcar en el follaje de algodon, soya y tomate condujeron estudios bajo condiciones de campo que revelaron una rápida inactivación en el haz de las hojas de estos tres cultivos. Dicha inovación fue más rapida en algodon donde tuvo un minimo efecto (determinado mediante el numero de larvas muertas) después de 24 horas de aplicado el producto. La persistencia del producto en el follaje de tomate fue significativamente mejor que en las otras plantas. En las plantas de tomate se tuvo una mínima hasta 96 horas después de la aplicacion. La mayor persistencia en el follaje de tomate fue atribuida a un tamizado mecanico del virus, debido a la naturaleza vellosa y curvada de las hojas de tomate. Smith et al. (1978) evaluando varios formulaciones del virus de la nucleopoliechosis de Heliothis encontraron que en la formulacion de NPV en alcohol polivinil fue mas efectiva sobre las larvas de Heliothis spp que una suspension con agente humectante.

Formulaciones de NPV contenido alcohol polivinil fueron igualmente efectivos en su actividad inicial sobre larvas de Heliothis spp así como la persistencia de NPV que formulacion de NPV con Keltosa. La adición de azucar no aumento la efectividad de NPV.
Luttrell et al. (1982) con el proposito de estimar el efecto a corto y largo plazo sobre Heliothis spp realizaron un estudio en laboratorio y campo, encontrando que NPV afecto la capacidad reproductiva de adultos femeninos que sobre vivieron a tratamientos en estado larval. Colecciones de campo de larvas después de aplicaciones de NPV indicaron que el tamaño y edad de las poblaciones larvaes es alterada. Dichos autores encontraron que el nivel de mortalidad del larvas disminuye en la medida que aumenta el instar larval de Heliothis spp.

Conrado B. y Laguna M. (1981) compararon bajo condiciones de lluvia en la zona de Sébaco el efecto de cinco insecticidcas y un testigo sobre la población de larvas de lepidópteras en tomate Utilizando muestras de cinco plantas por parcelas, no encontraron diferencias significativas en el efecto de los químicos sobre el número de larvas muertas de Heliothis spp, Spodoptera spp y Trichoplusia spp. Para el número de frutos malos se detectaron diferencias significativas obteniéndose el menor número de frutos malos en parcelas tratadas con Cytrolane 250 EC, Orthene 50% PM y Lorsban EC. Los insecticidas Monitor 600 EC y Lannate 90 junio bon al testigo obtuvieron mayores ro de frutos malos no detectándose diferencias significativas en estos tres tratamientos. Dichos autores adujeron que el número de frutos malos se debió más que todo a pudriciones causadas por hongos.

Rosset y Power (1984) investigando el uso de un insecticida biológico, un químico y una mezcla de ambos así como un tratamiento tradicional de aplicaciones rotativas de Decis, Monitor y Lannate no pudieron demostrar el efecto de los productos contra las plagas lepidóptera por que éstas no se presentaron durante el ensayo. No obstante dichos autores estudiaron el comportamiento de otras plagas.
El análisis varianza para el número de Bemicia tabaci por parcela y la prueba de Duncan detectaron diferencias significativas en el efecto de los tratamientos a dichos insectos encontrados el menor número en el tratamiento tradicional. En cuanto al rendimiento los análisis estadísticos no indicaron diferencias significativa entre el uso de Thiordan y su mezcla con Dipel y el sistema tradicional de aplicaciones. Sin embargo estos tratamientos tuvieron rendimientos significativamente más altos que los tratamientos que no tienen productos químicos.

Rosset (1986) reporta que aplicaciones semanales y de manera alterna de Monitor 500, Decis y Lannate 90 PM a partir de los 32 días después de la siembra mostraron poblaciones de adultos de B. tabaci significativamente menores que aplicaciones de Thiordan y DiIpel o una mezcla de ambos. A pesar de que dichas aplicaciones rotativas indujeron a un mayor rendimiento de frutos, Rosset afirma que aplicaciones de estos insecticidas posteriores a los 43 días después de siembra son innecesarias. Tal afirmación se fundamenta en una ausencia de relación entre el rendimiento final y aplicaciones posteriores a los 48 días y no así para aplicaciones hechas en los primeros 43 días de edad del cultivo en que se detectó una relación significativa entre rendimiento final y número de B. tabaci (r = 0.58).

López P. y Dávila R. (1986) en trabajos sobre dinámica poblacional en lotes de tomate en el Valle de Sébaco observaron, que K. lycopersicella alcanzó su punto máximo de incidencia al inicio de la floración, posteriormente las poblaciones disminuyeron manteniéndose constante durante el resto del experimento. Por su parte B. tabaci alcanzó dos puntos máximos al inicio de la floración y al inicio de fructificación, manteniéndose con niveles altos al momento de la cosecha.
RESULTADOS

Heliothis spp. encontrados en el follaje.

El análisis de varianza practicado al número de larvas de Heliothis spp. en el follaje detectó diferencias significativas entre los tratamientos evaluados. De acuerdo con la prueba de Tukey los insecticidas probados presentaron diferencias significativas únicamente respecto al testigo que presentó mayor población de larvas. Aunque no son estadísticamente diferentes, los insecticidas que tuvieron tendencia a disminuir el número de larvas de Heliothis spp. fueron Cytrolane y Decis.

En la figura 1 se observa que las poblaciones de larvas de Heliothis spp fueron reducidas en 24 y 28 horas post aplicación en las parcelas tratadas con Lannate + Decis y Cytrolane únicamente en las dos primeras aplicaciones. En la tercera aplicación únicamente el número de larvas de Heliothis spp fue cero al momento de la aplicación y 72 horas después para esa misma parcela. Para el resto de los insecticidas los resultados no revelaron ninguna tendencia consistente en cuanto a las poblaciones del gusano del fruto del tomate. La densidad poblacional de Heliothis spp. en el follaje se puede ver en las parcelas testigos, observándose los mayores picos a los 64,77 y 85 DDS.
Cuadro 8 Porcentajes de frutos dañados por larvas de Heliothis ssp y Keiferia lycopercicella en tomate. Sebaco, Matagalpa, 1984.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>DOSIS</th>
<th>HELIOTHIS SPP.</th>
<th>KEIFERIA LYCOPERCICELLA</th>
<th>B. TABACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELCAR</td>
<td>140 g</td>
<td>.88 a</td>
<td>.87 a</td>
<td>3.9 a</td>
</tr>
<tr>
<td></td>
<td>240 g</td>
<td>.82 a</td>
<td>.83 a</td>
<td>3.9 a</td>
</tr>
<tr>
<td></td>
<td>336 g</td>
<td>.78 a</td>
<td>.84 a</td>
<td>4.4 a</td>
</tr>
<tr>
<td>LANNATE</td>
<td>102 g</td>
<td>.82 a</td>
<td>.82 a</td>
<td>3.6 a</td>
</tr>
<tr>
<td></td>
<td>170 g</td>
<td>.81 a</td>
<td>.79 a</td>
<td>3.5 a</td>
</tr>
<tr>
<td></td>
<td>238 g</td>
<td>.84 a</td>
<td>.86 a</td>
<td>3.7 a</td>
</tr>
<tr>
<td>DECIS</td>
<td>240 cc</td>
<td>.77 a</td>
<td>.87 a</td>
<td>4.0 a</td>
</tr>
<tr>
<td></td>
<td>400 cc</td>
<td>.78 a</td>
<td>.77 a</td>
<td>3.8 a</td>
</tr>
<tr>
<td></td>
<td>540 cc</td>
<td>.75 a</td>
<td>.78 a</td>
<td>3.4 a</td>
</tr>
<tr>
<td>LANNATE + DECIS</td>
<td>102 g + 240 cc</td>
<td>.84 a</td>
<td>.85 a</td>
<td>4.2 a</td>
</tr>
<tr>
<td></td>
<td>170 g + 400 cc</td>
<td>.77 a</td>
<td>.89 a</td>
<td>4.0 a</td>
</tr>
<tr>
<td></td>
<td>238 g + 540 cc</td>
<td>.80 a</td>
<td>.80 a</td>
<td>3.5 a</td>
</tr>
<tr>
<td>CYTROLANE</td>
<td>480 cc</td>
<td>.86 a</td>
<td>.79 a</td>
<td>3.9 a</td>
</tr>
<tr>
<td></td>
<td>800 cc</td>
<td>.75 a</td>
<td>.87 a</td>
<td>4.1 a</td>
</tr>
<tr>
<td></td>
<td>1120 cc</td>
<td>.78 a</td>
<td>.82 a</td>
<td>3.8 a</td>
</tr>
<tr>
<td>TESTIGO</td>
<td></td>
<td>1.60 b</td>
<td>2.55 b</td>
<td>4.2 a</td>
</tr>
</tbody>
</table>
Fig. 1. Número de larvas de Heliothis spp en el follaje antes y después de la aplicación de tratamientos. Sebaco Matagalpa 1984.
Frutos danados por Heliothis spp.

El análisis de varianza realizado al número de frutos danados por Heliothis spp reveló la diferencia significativa entre los tratamientos evaluados. Según la prueba de Tukey hubo diferencia significativa entre los tratamientos evaluados en relación con el testigo, el cual mostró un mayor número de frutos danados. A pesar de no presentarse la diferencia significativa entre los insecticidas las parcelas tratadas con Lannate + Decis mostraron el menor número de frutos danados.

En la figura 2, se observa que el número de frutos danados por el gusano del fruto del tomate fue disminuido en periodos entre 24 y 72 horas únicamente en aquellas parcelas asperjadas con Lannate, Lannate + Decis y Cytrolane. Observándose una falta de tendencia en el resto de insecticidas. Dichas figura también revela que mayor número danado por Heliothis spp se presentó a los 72 DDS.

Keiferia lycopericella en el follaje

El análisis de varianza efectuado al número de larvas de Keiferia lycopericella en el follaje reveló diferencias significativas entre los tratamientos evaluados. Al evaluar la prueba de Tukey se detectó diferencias significativas entre los insecticidas y el testigo, sin embargo se encontró menor densidad en larvas de Keiferia lycopericella en las parcelas tratadas con Decis las mayoreas poblaciones se observaron en las parcelas no tratadas.
Todos los productos evaluados mantuvieron bajas las poblaciones durante todo el ensayo en comparación con el testigo que mantuvo fluctuando la población observándose el mayor pico a los 71 DDS bajando en forma brusca a los 76 DDS volviendo a subir a los 81 DDS pero en menor proporción.

Frutos danados por Keiferia lycopericella

El análisis de varianza para la evaluación del número de frutos danados por larvas de Keiferia lycopericella mostró diferencias significativas entre los tratamientos.

De acuerdo con Tukey únicamente se encontró diferencia significativa entre el testigo y el resto de los tratamientos. Aunque no son estadísticamente diferentes se observó un menor de frutos danados con Decis.

Bemicia tabaci en el follaje

El análisis de varianza realizado al número de adultos de B. tabaci en el follaje no mostró diferencias significativas. Según prueba de Tukey no hubo diferencias significativas entre ninguno de los tratamientos y el testigo.

Porcentaje de frutos danados

El análisis de varianza para el porcentaje de frutos danados por Heliothis spp y Keiferia lycopericella demostró la diferencia significativa entre los tratamientos comparados. La prueba de Tukey reveló que con respecto
Fig. 2. Número de frutos dañados por larvas de *Heliotris* spp antes y después de la aplicación de los tratamientos, Sébaco, Matagalpa, 1984.
Cuadro 8 Porcentajes de frutos dañados por larvas de Heliothis ssp y Keiferia lycopericella en tomate. Sebaco, Matagalpa, 1984.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>DOSIS</th>
<th>ESPECIES</th>
<th>Heliothis spp.</th>
<th>K. Lycopericella</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELCAR</td>
<td>140 g</td>
<td>1.55 ab</td>
<td>1.00 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>240 g</td>
<td>1.34 a</td>
<td>1.05 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>336 g</td>
<td>1.30 a</td>
<td>1.08 a</td>
<td></td>
</tr>
<tr>
<td>LANNATE</td>
<td>102 g</td>
<td>1.21 a</td>
<td>0.95 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170 g</td>
<td>1.16 a</td>
<td>0.86 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>238 g</td>
<td>1.25 a</td>
<td>0.89 a</td>
<td></td>
</tr>
<tr>
<td>DECIS</td>
<td>240 cc</td>
<td>1.13 a</td>
<td>0.87 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 cc</td>
<td>1.16 a</td>
<td>0.89 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>540 cc</td>
<td>1.07 a</td>
<td>0.84 a</td>
<td></td>
</tr>
<tr>
<td>LANNATE + DECIS</td>
<td>102 g + 240 cc</td>
<td>1.19 a</td>
<td>0.91 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170 g + 400 cc</td>
<td>1.03 a</td>
<td>0.92 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>238 g + 540 cc</td>
<td>1.23 a</td>
<td>0.87 a</td>
<td></td>
</tr>
<tr>
<td>CYTROLANE</td>
<td>480 cc</td>
<td>1.26 a</td>
<td>0.95 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 cc</td>
<td>1.08 a</td>
<td>0.94 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1120 cc</td>
<td>1.19 a</td>
<td>0.91 a</td>
<td></td>
</tr>
<tr>
<td>TESTIGO</td>
<td></td>
<td>1.94 b</td>
<td>1.46 b</td>
<td></td>
</tr>
</tbody>
</table>
Al testigoparcelas tratadas con lannate+Decis (102gr/mz +240 cc/mz) Decis (540cc/mz) ofrecieron un porcentaje de frutos dañados significativamente menores que en las parcelas testigos en donde se obtuvieron mayores porcentajes de frutos dañados (cuadro 4). En el resto de los tratamientos según prueba de Tukey no demostró diferencia significativa en relación al testigo.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>DOSIS</th>
<th>% DE FRUTOS DAÑADOS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTICIDAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELCAR</td>
<td>140 g</td>
<td>1.57 ab</td>
</tr>
<tr>
<td></td>
<td>240 g</td>
<td>2.33 ab</td>
</tr>
<tr>
<td></td>
<td>336 g</td>
<td>1.74 ab</td>
</tr>
<tr>
<td>LANNATE</td>
<td>102 g</td>
<td>1.79 ab</td>
</tr>
<tr>
<td></td>
<td>170 g</td>
<td>2.44 ab</td>
</tr>
<tr>
<td></td>
<td>238 g</td>
<td>1.28 ab</td>
</tr>
<tr>
<td>DECIS</td>
<td>240 cc</td>
<td>1.00 ab</td>
</tr>
<tr>
<td></td>
<td>400 cc</td>
<td>2.12 ab</td>
</tr>
<tr>
<td></td>
<td>540 cc</td>
<td>0.70 a</td>
</tr>
<tr>
<td>LANNATE + DECIS</td>
<td>102 g + 240 cc</td>
<td>0.50 a</td>
</tr>
<tr>
<td></td>
<td>170 g + 400 cc</td>
<td>1.11 ab</td>
</tr>
<tr>
<td></td>
<td>238 g + 540 cc</td>
<td>1.95 ab</td>
</tr>
<tr>
<td>CYTROLANE</td>
<td>480 cc</td>
<td>1.55 ab</td>
</tr>
<tr>
<td></td>
<td>800 cc</td>
<td>0.80 ab</td>
</tr>
<tr>
<td></td>
<td>1120 cc</td>
<td>2.10 ab</td>
</tr>
<tr>
<td>TESTIGO</td>
<td></td>
<td>4.64 b</td>
</tr>
</tbody>
</table>
DISCUSION

A pesar de que las poblaciones de larvas de Heliothis spp. fueron menores que las tratadas con Cytrolane y Decis dichos valores no difirieron significativamente el resto de parcelas exceptuando el testigo. Estos resultados pueden sustentarse en que las dimensiones de densidad de plaga observada entre 24 y 48 horas después de algunas aplicaciones no son estadísticamente diferentes que entre los otros insecticidas.

El control observado en los diferentes insecticidas con respecto al testigo afirman lo señalado por Young y Yearian y Lutrell en relación a la actividad del NPU sobre larvas de Heliothis spp. así como lo mencionado por Saunders en relación al uso de Decis y Lannate para el control de esta misma plaga.

No obstante el comportamiento de Cytrolane debe tenerse en cuenta lo señalado por King y Saunders quienes no recomiendan el uso de aspersiones foliares contradiciendo la inclusión de este tratamiento en las pruebas de productos realizado en la Estación Experimental del Valle de Sebaco.

La tendencia hacia un mejor efecto benigno sobre el número de frutos dañados por el gusano del fruto del tomate observadas en parcelas asperjadas con Lannate + Decis aunque no eran estadísticamente diferente de los demás insecticidas se debió probablemente a un problema sinergico de los modos de acción de ambos insecticidas.

Avendañp refiere la combinación de estos dos insecticidas es una práctica común para control de larvas lepidópteras en plantaciones de tomate en el valle de Sebaco.
El mayor número de frutos dañados por Heliothis spp. durante el periodo de 70-74 DDS según lo observado en parcelas testigos. Durante este periodo la planta está en su fructificación masiva según vallecillo de acuerdo al MIC de plagas de la universidad de california (1982) son frutos preferidos por el son los frutos preferidos por el gusano del fruto.

La tendencia no significativa observada para el numero de larvas de K. lycopersicella entre los diferentes insecticidas así como el numero de frutos dañados por esta misma plaga se contradice con lo señalado por King y Saunders quienes no recomiendan el uso del piretroide para el control de minadores de la hoja posiblemente por su accion de contacto señalado por estos mismos autores.

Segun observaciones realizadas en las parcelas testigos al momento de iniciar los recursos se registro un numero considerable del gusano alfiler en el follaje indicando que esta plaga ataca al cultivo desde etapas anteriores a la fructificacion. Coincidiendo con lo señalado con Rosset y Vandemer y Vallecillo quienes afirmaron que esta plaga se presenta en plantaciones de tomate en maximo crecimiento vegetativo progresando su poblacion durante la etapa de floracion y fructificacion si no recibe ningun tipo de control. En el caso de B. Tabaci en el follaje no se detecto diferencia significativa de los onsecticos con respecto al testigo. Estos posiblemente se puede explicar por lo reducido tamañio de las parcelas experimentales utilizadas en este estudio. Rosset utilizo parcelas de 72m2 para estos estudios sobre metodos de muestreo de mosca blanca en tomate. Por lo tanto en parcelas de tamaño reducido la gran movilidad de esta plaga puede explicar por el reducido tamaño de las parcelas experimentales utilizadas en este estudio. Rosset utilizo parcelas de 72m2 para estudios sobre metodos de muestreo de mosca blanca en tomate. Por lo tanto en parcelas de tamaño reducido la gran movilidad de esta plaga puede enmascarar o confundir la presencia de dicho insecto en plantas de tomate.
En cuanto al efecto de los tratamientos el porcentaje de frutos dañados por larvas del gusano del fruto del tomate y del gusano alfiler solamente los tratamientos de Decis y Lannate+Decis superaron significativamente a las parcelas testigos coincidiendo con lo señalado para estos productos por Saunders et al. (1983) manual de la ACC (1972) boletín informativo de la DUPONT (1967) y king y Saunders (1984) y contradiciendo resultados obtenidos por Conrado y Laguna (1981) en una comparación de insecticidas sobre el número de larvas lepidópteras muertas. Dichos autores no detectaron diferencia significativa entre el número de frutos malos, por incluir frutos malos dañados por pudriciones fungosas.
CONCLUSIONES

1. El porcentaje de frutos dañados por larvas de Heliothis spp y K. lycopersicella al final de las aplicaciones de los tratamientos es significativamente menor en parcelas tratadas con Decis 2.5 EC en dosis de 540 cc/mz + 240 cc/mz de producto comercial respectivamente que el resto de las parcelas incluyendo al testigo que presento el porcentaje de frutos dañados.

2. No hubo incidencias significativa entre Elcar, Lannate, Decis, Decis+Lannate y Cytrolane en las variables de heliothis spp. y K. lycopersicella tanto en el follaje como el numero de frutos dañados. Los quince tratamientos bajaron las poblaciones de las especies en estudio a un nivel significativamente diferente al testigo.

Aunque no hubo diferencia significativa se pueden observar las siguientes tendencias.

2.1 Los insecticidas Cytrolane 250 E en dosis de 800 cc/mz y Decis 2.5 EC en dosis de 540 cc/mz son aparentemente mas eficientes en la disminucion de larvas de Heliothis spp. en el follaje. En cambio en los frutos dañados por el gusano del fruto del tomate la mezcla Lannate + Decis en dosis de 170 gr/mz + 400cc/mz mostro el menor numero de frutos dañados por esta misma plaga.

2.2 El insecticida Decis en dosis de 400 cc/mz y 500 cc /mz mostro numericamente los menores valores para larvas de K. lycopersicella en follaje y frutos dañados por esta misma plaga respectivamente.
RECOMENDACIONES

En base a los resultados obtenidos en este estudio y con el objeto de contribuir a la evaluacion de los insecticidas utilizados para el control de plagas en tomate con fines industriales se recomienda:

1. Para el control de Heliothis y K. lycopersicella evaluar la efectividad de Lannate, decis y NPV unicamente a dosis comerciales utilizando parcelas experimentales significativamente mayores de 8m2.

2. Descotinuar la evaluacion de Cytrolane para el control de plagas en tomate debido a su alta propiedad toxica.

3. En las evaluaciones de estos insecticidas para el control de Heliothis y K. lycopersicella ajustarse estrictamente a las recomendaciones para el uso de dichos productos.

4. Para el control de Bemisia tabaci estudiar la efectividad de insecticidas sistemicos durante los primeros 68 dias de edad del cultivo.

5. Estimar al momento de la cosecha el efecto de los insecticidas sobre el rendimiento comercial del tomate.
LITERATURA CITADA

ANEXOS

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrado</th>
<th>Cuadrado Medio</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticiones</td>
<td>4</td>
<td>3.90</td>
<td>0.98</td>
<td>2.50</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>15</td>
<td>25.09</td>
<td>1.67</td>
<td>4.26*</td>
</tr>
<tr>
<td>Error (A)</td>
<td>60</td>
<td>23.56</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Fecha</td>
<td>6</td>
<td>22.48</td>
<td>3.75</td>
<td>12.64*</td>
</tr>
<tr>
<td>Tratamientos x fecha</td>
<td>90</td>
<td>25.39</td>
<td>0.28</td>
<td>0.95NS</td>
</tr>
<tr>
<td>Error (B)</td>
<td>384</td>
<td>113.83</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>559</td>
<td>214.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Significativo al 5% de probabilidad

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrado</th>
<th>Cuadrados Medio</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticiones</td>
<td>4</td>
<td>3.33</td>
<td>.83</td>
<td>8.46</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>15</td>
<td>97.57</td>
<td>6.50</td>
<td>66.05*</td>
</tr>
<tr>
<td>Error (A)</td>
<td>60</td>
<td>5.91</td>
<td>9.85</td>
<td></td>
</tr>
<tr>
<td>Fecha</td>
<td>6</td>
<td>43.10</td>
<td>7.18</td>
<td>37.66*</td>
</tr>
<tr>
<td>Tratamientos por fecha</td>
<td>90</td>
<td>33.66</td>
<td>0.37</td>
<td>1.96*</td>
</tr>
<tr>
<td>Error (B)</td>
<td>384</td>
<td>73.23</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>559</td>
<td>256.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Significativo al 5% de probabilidad.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrado</th>
<th>Cuadrados Medio</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticiones</td>
<td>4</td>
<td>1.123</td>
<td>0.28</td>
<td>2.21</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>15</td>
<td>11.49</td>
<td>0.77</td>
<td>6.03*</td>
</tr>
<tr>
<td>Error (A)</td>
<td>60</td>
<td>7.62</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Fecha</td>
<td>6</td>
<td>6.30</td>
<td>1.05</td>
<td>6.76*</td>
</tr>
<tr>
<td>Tratamientos por fecha</td>
<td>90</td>
<td>10.42</td>
<td>0.12</td>
<td>0.75NS</td>
</tr>
<tr>
<td>Error (B)</td>
<td>384</td>
<td>59.64</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>559</td>
<td>96.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : Significativo al 5% de probabilidad

NS: No significativo al 5% de probabilidad

<table>
<thead>
<tr>
<th>Fuente de Variacion</th>
<th>Grados de libertad</th>
<th>Suma de cuadrado</th>
<th>Cuadrado Medio</th>
<th>F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticiones</td>
<td>4</td>
<td>31.09</td>
<td>7.77</td>
<td>2.57</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>15</td>
<td>44.48</td>
<td>2.97</td>
<td>0.98 NS</td>
</tr>
<tr>
<td>Error (A)</td>
<td>60</td>
<td>181.31</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>Fecha</td>
<td>6</td>
<td>1834.18</td>
<td>305.7</td>
<td>108.38*</td>
</tr>
<tr>
<td>Tratamientos x fecha</td>
<td>90</td>
<td>234.77</td>
<td>3.61</td>
<td>1.28*</td>
</tr>
<tr>
<td>Error (B)</td>
<td>384</td>
<td>1083.15</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>559</td>
<td>3498.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS: No significativo

*: Significativo al 5% de probabilidad.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrado</th>
<th>Cuadrado medio F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeticiones</td>
<td>4</td>
<td>4.23</td>
<td>1.06</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>15</td>
<td>3.36</td>
<td>2.24</td>
</tr>
<tr>
<td>Error</td>
<td>60</td>
<td>8.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>1.22</td>
<td></td>
</tr>
</tbody>
</table>

Significativo al 5% de probabilidad.

<table>
<thead>
<tr>
<th>MES</th>
<th>TEMPERATURAS</th>
<th>HP</th>
<th>HR</th>
<th>Nubosidad Total</th>
<th>Precipitación mm</th>
<th>Dirección Viento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máxima</td>
<td>Mínima</td>
<td>Media</td>
<td>Máxima</td>
<td>Mínima</td>
<td>Media</td>
</tr>
<tr>
<td>Febrero</td>
<td>30.4</td>
<td>19.6</td>
<td>25.0</td>
<td>95</td>
<td>43</td>
<td>69</td>
</tr>
<tr>
<td>Marzo</td>
<td>31.6</td>
<td>19.9</td>
<td>25.8</td>
<td>92</td>
<td>38</td>
<td>69</td>
</tr>
<tr>
<td>Abril</td>
<td>33.6</td>
<td>20.1</td>
<td>26.8</td>
<td>94</td>
<td>36</td>
<td>69</td>
</tr>
<tr>
<td>Mayo</td>
<td>32.32</td>
<td>20.6</td>
<td>26.4</td>
<td>95</td>
<td>42</td>
<td>70</td>
</tr>
</tbody>
</table>

Fuente: Estación Meteorológica, Valle de Sébaco, Matagalpa.