UNIVERSIDAD NACIONAL AGRÁRIA

FACULTAD DE AGRONOMIA

TRABAJO DE DIPLOMA

INFLUENCIA DE PERIODOS DE CONTROL DE MALEZAS SOBRE EL CRECIMIENTO Y RENDIMIENTO DEL FRIJOL COMÚN
(Phaseolus vulgaris L.) Var. DOR 364

AUTOR
Br. MARCOS ANTONIO PERALTA JARQUIN

ASESOR
Ing. Agr. FREDDY ALEMAN Z. MSc.

MANAGUA, NICARAGUA
FEBRERO 2000
UNIVERSIDAD NACIONAL AGRARIA
FACULTAD DE AGRONOMIA

TRABAJO DE DIPLOMA

INFLUENCIA DE PERIODOS DE CONTROL DE MALEZAS SOBRE EL CRECIMIENTO Y RENDIMIENTO DEL CULTIVO DE FREDDY COMUN
(Phaseolus vulgaris L.) Var DOR 364

AUTOR
Br. MARCOS ANTONIO PERALTA JARQUIN

ASESOR
Ing. Agr. FREDDY ALEMAN Z. MSc.

Presentado a la consideración del honorable tribunal examinador como requisito parcial para optar al grado de Ingeniero Agrónomo con orientación en Fitotecnia

MANAGUA, NICARAGUA
Febrero, 2000
DEDICATORIA

Un camino recorrido donde cada fase de la vida se convierte en una enseñanza en la persona, ayudándole a crecer como ser humano, para ser cada día mejor, es por eso que dedico este trabajo:

A Dios por ayudarme a andar parte de este camino.

A mi madre Candida Albertina Jarquín Zelaya, por haber dado todo lo mejor para el cumplimiento de mi carrera y realizar mi vida como profesional.

A mi hermana, Verónica del Socorro Peralta Jarquín, por depositar su confianza en mi persona, por compartir y ser parte importante de este trabajo, hoy hecho una realidad.

A mis hermanos; Cesar, Martha, Yahaira y Homero quienes con su apoyo y valiosos consejos me impulsaron a salir adelante para la formación del mañana.

A mi cuñada Daysi Chavarría Ruíz, por haber colaborado en una etapa de mis estudios.

A todos mis sobrinos quienes con su presencia y alegría me han estimulado para superarme día a día.

Marcos Antonio Peralta Jarquín
AGRADECIMIENTO

A Dios, por haber permitido la realización de una de mis metas, llegar a alcanzar el título profesional de Ingeniero Agrónomo

Al Ing. Agr. Freddy Sebastian Alemán Zeledón MSc, por su asesoría, confianza, sugerencias y colaboración brindada en la realización y culminación del presente trabajo de investigación.

Al Ing. Agr. Francisco José Pérez, Asistente de Investigación por su presencia y tiempo dedicado en la revisión del presente trabajo.

Al Programa Ciencias Plantas por facilitar el financiamiento de la etapa de campo, análisis, redacción y publicación de la presente investigación.

A mi Universidad Nacional Agraria, docentes, por brindarme todos los conocimientos adquiridos en este camino.

Al personal de apoyo de los centros de documentación, Dilma López y Carolina Padilla, por su apoyo en cuanto a la facilitación del material bibliográfico necesario.

A la Lic. Catalina Torres, por extender su mano amiga en todo momento.

A todos aquellos amigos y personas que estuvieron directa o indirectamente ligados para llevar a cabo la realización de este trabajo.

Marcos Antonio Peralta Jarquín
INDICE CONTENIDO

<table>
<thead>
<tr>
<th>SECCIÓN</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICE DE TABLAS</td>
<td>i</td>
</tr>
<tr>
<td>INDICE DE FIGURAS</td>
<td>ii</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>iii</td>
</tr>
<tr>
<td>I. INTRODUCCION</td>
<td>1</td>
</tr>
<tr>
<td>II. MATERIALES Y METODOS</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Ubicación del ensayo</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Tipo de suelo</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Diseño experimental</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Manejo agronómico</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Variables evaluadas</td>
<td>8</td>
</tr>
<tr>
<td>2.5.1 En malezas</td>
<td>8</td>
</tr>
<tr>
<td>2.5.2 En el cultivo</td>
<td>9</td>
</tr>
<tr>
<td>2.5.3 A la cosecha</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Análisis estadístico</td>
<td>10</td>
</tr>
<tr>
<td>2.7 Análisis económico</td>
<td>11</td>
</tr>
<tr>
<td>III RESULTADOS Y DISCUSION</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Influencia de periodos de control sobre el comportamiento y dinámica de las malezas</td>
<td>12</td>
</tr>
<tr>
<td>3.1.1. Diversidad de malezas</td>
<td>12</td>
</tr>
<tr>
<td>3.1.2. Abundancia de malezas</td>
<td>13</td>
</tr>
<tr>
<td>3.1.3. Cobertura de malezas</td>
<td>15</td>
</tr>
<tr>
<td>3.2. Influencia de periodos de control sobre el crecimiento y el rendimiento del cultivo del frijol común</td>
<td>16</td>
</tr>
<tr>
<td>3.2.1 Altura de planta en frijol</td>
<td>16</td>
</tr>
<tr>
<td>3.2.2 Numero de vainas por planta</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3 Numero de ramas por planta</td>
<td>19</td>
</tr>
<tr>
<td>3.2.4 Altura de inserción a la primera vaina</td>
<td>19</td>
</tr>
<tr>
<td>3.2.5 Peso de cien granos</td>
<td>19</td>
</tr>
<tr>
<td>3.2.6 Rendimiento del grano de frijol</td>
<td>20</td>
</tr>
<tr>
<td>3.2.7 Peso seco de la planta de frijol</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Análisis económico</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1 Análisis de presupuesto parcial</td>
<td>23</td>
</tr>
<tr>
<td>3.3.2 Análisis de dominancia</td>
<td>24</td>
</tr>
<tr>
<td>3.3.3 Análisis de retorno marginal</td>
<td>25</td>
</tr>
<tr>
<td>IV. CONCLUSIONES</td>
<td>27</td>
</tr>
<tr>
<td>V. RECOMENDACIONES</td>
<td>28</td>
</tr>
<tr>
<td>VI. REFERENCIAS BIBLIOGRÁFICAS</td>
<td>29</td>
</tr>
<tr>
<td>Tabla</td>
<td>Paginas</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Ubicación y ecología de la estación experimental La Compañía,</td>
<td>3</td>
</tr>
<tr>
<td>San Marcos, Carazo.</td>
<td></td>
</tr>
<tr>
<td>2. Propiedades químicas y físicas de los suelos de la estación</td>
<td>5</td>
</tr>
<tr>
<td>experimental. La Compañía Carazo.</td>
<td></td>
</tr>
<tr>
<td>3. Descripción de los tratamientos evaluados La Compañía. Carazo,</td>
<td>6</td>
</tr>
<tr>
<td>Postrera 1997.</td>
<td></td>
</tr>
<tr>
<td>4. Área del experimento en m² La Compañía. Carazo, Postrera 1997.</td>
<td>6</td>
</tr>
<tr>
<td>5. Características morfológicas y agronómicas de la variedad DOR-364.</td>
<td>8</td>
</tr>
<tr>
<td>6. Escala de cuatro grados para evaluar la cobertura de malezas.</td>
<td>9</td>
</tr>
<tr>
<td>7. Influencia de períodos de control de malezas sobre la</td>
<td>13</td>
</tr>
<tr>
<td>diversidad de las malezas a la madurez fisiológica del cultivo</td>
<td></td>
</tr>
<tr>
<td>del frijol común La Compañía, Postrera 1997.</td>
<td></td>
</tr>
<tr>
<td>8. Influencia de los períodos de control sobre la altura del cultivo</td>
<td>18</td>
</tr>
<tr>
<td>del frijol común. La Compañía, Postrera 1997.</td>
<td></td>
</tr>
<tr>
<td>9. Influencia de los períodos de control de malezas sobre el</td>
<td>20</td>
</tr>
<tr>
<td>número de vainas, ramas, altura de inserción y peso de 100 granos</td>
<td></td>
</tr>
<tr>
<td>del frijol común. La Compañía, Postrera, 1997.</td>
<td></td>
</tr>
<tr>
<td>10. Influencia de los períodos de control de malezas sobre el</td>
<td>22</td>
</tr>
<tr>
<td>rendimiento y peso de paja del frijol común. La Compañía, Postrera,</td>
<td></td>
</tr>
<tr>
<td>1997.</td>
<td></td>
</tr>
<tr>
<td>11. Análisis de presupuesto parcial realizados a los tratamientos</td>
<td>24</td>
</tr>
<tr>
<td>evaluados. La Compañía, Carazo, Postrera, 1997.</td>
<td></td>
</tr>
<tr>
<td>12. Análisis de dominancia a los tratamiento evaluados.</td>
<td>24</td>
</tr>
<tr>
<td>13. Análisis de retorno marginal de los tratamiento en estudio.</td>
<td>26</td>
</tr>
<tr>
<td>La Compañía, Postrera, 1997.</td>
<td></td>
</tr>
</tbody>
</table>
INDICE DE FIGURAS

<table>
<thead>
<tr>
<th>Figura Numero</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1.</td>
<td>Climatograma de la Estación Experimental La Compañía, Carazo (Según Walther & Lieth, 1960).</td>
<td>4</td>
</tr>
<tr>
<td>Figura 2.</td>
<td>Influencia de los periodos de control sobre la abundancia de malezas. La Compañía, Postrera, 1997.</td>
<td>15</td>
</tr>
<tr>
<td>Figura 3.</td>
<td>Influencia de los periodos de control de malezas sobre la cobertura de malezas. La Compañía, Carazo Postrera, 1997.</td>
<td>16</td>
</tr>
</tbody>
</table>
RESUMEN

El presente trabajo se realizó en época de postrera de 1997 (septiembre – diciembre) en la estación experimental La Compañía, ubicada en el municipio de San Marcos, Carazo. El trabajo se realizó en un suelo de origen volcánico de la serie Masatepe (MS), con el propósito de determinar la influencia de períodos de control de malezas sobre la dinámica de las malezas y el crecimiento y rendimiento del cultivo de frijol común (*Phaseolus vulgaris* L.). Para el estudio se utilizó un diseño de bloques al azar (BCA) con cuatro repiclas y siete tratamientos. Los tratamientos evaluados fueron períodos de control de malezas durante 14, 21, 28, 35, 42, 49 días después de la siembra. Un tratamiento estuvo enmalezado totalmente durante todo el ciclo del cultivo. Las variables evaluadas fueron diversidad, abundancia y cobertura de malezas, altura de planta de frijol común, componentes del rendimiento y el rendimiento como tal. Los resultados pueden resumirse de la siguiente forma: se encontraron trece especies de malezas en el ensayo compitiendo con el cultivo, cinco pertenecen a las monocotiledóneas y ocho a las dicotiledóneas. Los períodos de control de malezas no muestran efectos sobre las variables abundancia y cobertura de malezas. La altura de planta en el cultivo de frijol común se incrementan (31, 50, y 59 cm) a medida que aumenta el período de competencia con las malezas. Los mejores rendimientos de grano (1310 kg/ha y 1257 kg/ha) se obtuvieron con períodos de control de malezas de 35 y 28 días después de la siembra, sin embargo estos tratamiento no difieren estadísticamente del tratamiento con control de malezas durante 21 días después de la siembra. La mejor tasa de retorno marginal (460%) se obtuvo con el tratamiento con control durante 21 días después de la siembra, corroborando la importancia de mantener libre de malezas el cultivo de frijol hasta dicho momento.
I. INTRODUCCION

El frijol común (*Phaseolus vulgaris* L.), es después del maíz (*Zea mays* L.), el principal alimento básico de los nicaragüenses (Tapia & Camacho, 1988). Sus semillas presentan alto contenido de proteínas (22.3 %) y es una fuente excelente de hierro y vitaminas B (7.9 y 2.2 mg/kg de semilla seca, respectivamente) (Blanco, 1991). El frijol se cultiva en todo el país bajo condiciones variables de lluvia. Estas fluctúan entre 500 y 1500 mm anuales, con temperaturas de 10 a 27º C. El frijol se adapta a suelos de textura franco a franco arcilloso y pH de 6 a 6.5 (MAG-CNIGB, 1992). Se estima que en Nicaragua el total de área apropiada para siembra de frijol común es de 720 000 hectáreas siendo el 14 % de las mismas utilizadas en la actualidad (MAG, 1995).

La zona del Pacífico de Nicaragua comprende una franja de terreno con una longitud de 80 km y 60 kilómetros de ancho (área cultivable). La producción de frijol se extiende a través de la mayor parte de dicha franja, a excepción de la zona de occidente en la cual las bajas precipitaciones y las altas temperaturas limitan su producción. La zona en mención presenta alturas inferiores a los 1000 msnm, su topografía es plana y los suelos no son aptos para la producción del cultivo de frijol. Llano (1998), indica que la producción de frijol en la zona del pacífico representa de 10 a 12 % de la producción nacional.

Los principales factores limitantes en la producción del frijol común son: Falta de semilla de buena calidad, plagas, enfermedades, malezas, poca aplicación de tecnología avanzada y la deficiente capacitación de productores y técnicos (Alemán y Tercero, 1991). Las malezas afectan los rendimientos del cultivo del frijol común, este daño es más marcado en áreas poco tecnificadas, manejadas por pequeños productores quienes realizan prácticas manuales poco efectivas que involucran excesiva cantidad de mano de obra, aumentando los costos de producción y propiciando la diseminación de enfermedades, fungosas y bacterianas (Tapia, 1987).
Muchos investigadores reconocen que las malezas no producen los mismos daños durante el ciclo vegetativo del cultivo, si no que el daño resulta mayor en una etapa determinada del desarrollo a la cual denominaron períodos crítico de competencia (Labrada, 1978; William, 1983 & Fields, 1985) Este conocimiento permite mejorar los momentos para realizar los controles de las malezas. Según Alemán (1989 b), el cultivo del frijol es capaz de soportar 21 días de competencia sin disminuir su rendimiento de manera significativa, el período crítico de competencia se ubica entre los 21 y 28 días después de la siembra para variedades con 64 días a madurez fisiológica. Este período está relacionado con la etapa de aparición de la tercera hoja trifoliada y prefloración. Por otro lado, el CNIGB (1992), indica que si se permite a las malezas competir con el cultivo de frijol durante el período crítico de competencia, este se verá afectado severamente en su producción, ocasionando pérdidas que oscilan entre el 50 y 70 %.

Un aspecto importante en el manejo de las malezas es el conocimiento sobre los períodos en los cuales se debe realizar el control de las mismas, dicho conocimiento permite realizar los controles en los momentos en los cuales las malezas están afectando negativamente al cultivo, dicha información es posible obtenerla únicamente mediante la determinación del período crítico de competencia de las malezas, el cual está determinado por dos etapas dentro del desarrollo del cultivo, la primera etapa corresponde al periodo de tiempo que el cultivo puede soportar sin verse afectado sus rendimientos y la segunda a la etapa después de la cual, la aparición de las malezas deja de afectar el normal crecimiento y desarrollo de un determinado cultivo. Es por eso que se desarrolló el presente trabajo el cual se propuso los siguientes objetivos:

1.- Obtener información específica acerca de la competencia de las malezas con el cultivo de frijol común.

2.- Conocer el número de días que puede permanecer libre de malezas la variedad DOR-364 para no ver afectado su rendimiento (umbral tardío de competencia de malezas).
II. MATERIALES Y METODOS

2.1 Ubicación del ensayo

El ensayo se realizó en la época de postrera (septiembre a diciembre, 1997) en la estación experimental La Compañía, ubicada en el municipio de San Marcos departamento de Carazo. La ubicación geográfica y condiciones climáticas de la finca experimental se presenta en la Tabla 1 y Figura 1.

<table>
<thead>
<tr>
<th>Tabla 1. Ubicación y ecología de la estación experimental La Compañía, San Marcos, Carazo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitud norte</td>
</tr>
<tr>
<td>Longitud oeste</td>
</tr>
<tr>
<td>Elevación (msnm)</td>
</tr>
<tr>
<td>Precipitación promedio (mm)</td>
</tr>
<tr>
<td>Humedad relativa (%)</td>
</tr>
<tr>
<td>Temperatura promedio (°C)</td>
</tr>
</tbody>
</table>

Figura 1. Climatograma de la Estación Experimental La Compañía, Carazo (Según Walther & Lieth, 1960)
2.2 Tipo de suelo

Los suelos son de origen volcánico, pertenecen a la serie Masatepe (MS) se caracterizan por poseer un alto contenido de carbono orgánico y alto porcentaje de saturación de bases. Son suelos de textura franca, moderadamente profundos, bien drenados, medianamente ácidos a neutros, con permeabilidad y capacidad de retención de humedad moderada. Estos suelos se encuentran en pendiente casi plana a moderadamente escarpadas (MAG, 1971). En la Tabla 2 se presentan las propiedades químicas y físicas de los suelos de la estación experimental La Compañía, Carazo.

Tabla 2. Propiedades químicas y físicas de los suelos de la estación experimental La Compañía, Carazo.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad (cm)</td>
<td>20.00</td>
</tr>
<tr>
<td>pH (agua)</td>
<td>6.50</td>
</tr>
<tr>
<td>Materia orgánica (%)</td>
<td>10.13</td>
</tr>
<tr>
<td>Nitrógeno (%)</td>
<td>0.69</td>
</tr>
<tr>
<td>Carbono orgánico (%)</td>
<td>12.40</td>
</tr>
<tr>
<td>Fósforo (ppm)</td>
<td>0.49</td>
</tr>
<tr>
<td>Potasio (meq/100 gr de suelo)</td>
<td>1.20</td>
</tr>
<tr>
<td>Calcio (meq/100 gr de suelo)</td>
<td>24.00</td>
</tr>
<tr>
<td>Magnesio (meq/100 gr de suelo)</td>
<td>2.50</td>
</tr>
<tr>
<td>CIC (meq/100 gr. de suelo)</td>
<td>28.90</td>
</tr>
<tr>
<td>Saturación de bases</td>
<td>84.61</td>
</tr>
<tr>
<td>Textura del suelo</td>
<td></td>
</tr>
<tr>
<td>Arcilla (%)</td>
<td>28.00</td>
</tr>
<tr>
<td>Limo (%)</td>
<td>36.00</td>
</tr>
<tr>
<td>Arena (%)</td>
<td>36.00</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio de Suelos y Aguas U.N.A., 1992
meq: miliequivalentes
ppm: partes por millón.
2.3 Diseño Experimental

El diseño experimental utilizado fue de Bloques Completos al Azar (BCA) en el cual se evaluó el factor días de control de malezas, se utilizaron cuatro réplicas y siete tratamientos en total, de los cuales seis recibieron controles de malezas alternos y uno permaneció enmalezado durante todo el ciclo. En la Tabla 3 se enuncian los tratamientos en estudio.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Descripción</th>
<th>Controles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>siempre enmalezado</td>
<td>testigo</td>
</tr>
<tr>
<td>2</td>
<td>control 14 dds</td>
<td>14 dds</td>
</tr>
<tr>
<td>3</td>
<td>control 21 dds</td>
<td>14, 21 dds</td>
</tr>
<tr>
<td>4</td>
<td>control 28 dds</td>
<td>14, 21, 28 dds</td>
</tr>
<tr>
<td>5</td>
<td>control 35 dds</td>
<td>14, 21, 28, 35 dds</td>
</tr>
<tr>
<td>6</td>
<td>control 42 dds</td>
<td>14, 21, 28, 35, 42 dds</td>
</tr>
<tr>
<td>7</td>
<td>control 49 dds</td>
<td>14, 21, 28, 35, 42, 49 dds</td>
</tr>
</tbody>
</table>

dd: días después de la siembra.

Cada parcela experimental consistió de seis surcos con longitud de seis metros y distancia entre surcos de 0.4 m. A la parcela útil le correspondieron cuatro surcos centrales, la distancia entre réplicas fue de 1 m y entre las parcela 0.8 m. La descripción del área del experimento se enuncia en la Tabla 4.

<table>
<thead>
<tr>
<th>Tabla 4</th>
<th>Área del experimento en m². La Compañía. Postrera 1997.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcela útil</td>
<td>9.6 m²</td>
</tr>
<tr>
<td>área de la parcela experimental</td>
<td>14.4 m²</td>
</tr>
<tr>
<td>área de un bloque</td>
<td>132.0 m²</td>
</tr>
<tr>
<td>área de bloques</td>
<td>528.0 m²</td>
</tr>
<tr>
<td>área entre bloques</td>
<td>66.0 m²</td>
</tr>
<tr>
<td>área total del experimento</td>
<td>594.0 m²</td>
</tr>
</tbody>
</table>
2.4 Manejo agronómico

La preparación del suelo se realizó bajo el sistema de labranza mínima. Se inició con la limpieza del terreno (chapea) y surcido de área. La siembra se hizo de forma manual, depositando la semilla al fondo del surco. Se utilizaron 46 kg de semilla/ha, para obtener una densidad poblacional de 400 000 plantas por hectárea.

La fertilización consistió en la aplicación de fertilizante completo fórmula 12 30 10 a razón de 130 kg / ha, (15.6 kg N / ha, 39 kg P₂O₅ / ha y 13 kg K₂O / ha), al momento de la siembra, según recomendaciones de otros investigadores nacionales (Vanegas, 1986).

Las prácticas de control de malezas se realizaron de acuerdo a los tratamientos evaluados, utilizando para ello medios mecánicos (azadón). No se realizó ningún control fitosanitario para plagas y enfermedades.

Se utilizó la variedad de frijol DOR-364 originario de Guatemala, recomendada en las regiones IV y V (MAG, 1992). Las características morfológicas y agronómicas de esta variedad se reflejó en la Tabla 5.
Tabla 5. Características morfológicas y agronómicas de la variedad DOR-364.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosecha en días</td>
<td>78</td>
</tr>
<tr>
<td>Hábito de crecimiento</td>
<td>IIa</td>
</tr>
<tr>
<td>Región</td>
<td>IV, V</td>
</tr>
<tr>
<td>Mosaico común</td>
<td>Resistente</td>
</tr>
<tr>
<td>Mosaico dorado</td>
<td>Resistente</td>
</tr>
<tr>
<td>Bacteriosis</td>
<td>Intermedio</td>
</tr>
<tr>
<td>Mustia hilachosa</td>
<td>Intermedio</td>
</tr>
<tr>
<td>Mancha angular</td>
<td>Intermedio</td>
</tr>
<tr>
<td>Antracnosis</td>
<td>Intermedio</td>
</tr>
<tr>
<td>Color</td>
<td>Rojo oscuro</td>
</tr>
<tr>
<td>Lustre</td>
<td>Brillante</td>
</tr>
<tr>
<td>Forma</td>
<td>Arruinada</td>
</tr>
</tbody>
</table>

2.5. Variables evaluadas

2.5.1 En malezas

Se realizó un recuento (63 dds), usando el método del metro cuadrado. El muestreo se realizó de forma sistemática en la parcela útil. Las variables evaluadas fueron:

Diversidad: Se determinó el número de especies de malezas, tanto monocotiledóneas y dicotiledóneas presentes el área experimental.

Abundancia: Se contó el número de individuos de malezas presentes en el área de muestreo.

Cobertura: Se evaluó por medio de inspección visión en cada parcela útil. Se utilizó la escala de cuatro grado propuesta por Pérez (1987), para definir los porcentajes de enmalezamiento (Tabla 6).
Tabla 6. Escala de cuatro grados para evaluar la cobertura de malezas

<table>
<thead>
<tr>
<th>Grados</th>
<th>Porcentaje</th>
<th>Enmalezamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-5 por ciento</td>
<td>Débil</td>
</tr>
<tr>
<td>2</td>
<td>6-24 por ciento</td>
<td>Mediano</td>
</tr>
<tr>
<td>3</td>
<td>25-50 por ciento</td>
<td>Fuerte</td>
</tr>
<tr>
<td>4</td>
<td>51-100 por ciento</td>
<td>Muy fuerte</td>
</tr>
</tbody>
</table>

2.5.2 En el cultivo

Altura de planta: Se efectuó en tres momentos (21, 35, y 49 dds), para ello se tomaron diez plantas al azar en la parcela útil y se midió su longitud desde la base del tallo hasta la última hoja trifoliada extendida.

Número de ramas por planta: Se determinó al momento de la madurez fisiológica del cultivo, se tomó al azar una muestra de diez plantas dentro de la parcela experimental, a las cuales se les contó el número de ramas. Luego se obtuvo el promedio por planta.

Número de vainas por planta: Se realizó al momento de la madurez fisiológica del cultivo, se tomaron diez plantas al azar dentro del área de borde de la parcela experimental, a las cuales se les contó el número de vainas presentes en cada una de ellas. Luego se obtuvo el promedio por planta.

Altura de inserción a la primera vaina: Se tomaron al azar diez plantas de frijol dentro del área de borde de la parcela experimental, a las cuales se les determinó la altura de inserción de la primera vaina, para posteriormente obtener el promedio de altura. El muestreo se realizó a la madurez fisiológica del cultivo.

Peso seco de planta de frijol: Se recolectaron al azar diez plantas de frijol del área correspondiente al borde de la parcela útil a las cuales se les determinó el peso fresco. De esta muestra se extrajeron muestras de 100 gramos para la determinación del peso seco. La
muestra se sometió a una temperatura de 60 °C por 72 horas para obtener la relación de peso seco en las muestras.

2.5.3 A la cosecha

La cosecha se efectuó a los 86 días después de la siembra, y consistió en el arranque de las plantas de forma manual, las que se dejaron secar al sol, procediendo a tomar las variables de componentes del rendimiento.

Número de vainas por planta: Se tomaron diez plantas al azar dentro de cada parcela útil y se contabilizó el número de vainas en cada una de ellas, posteriormente se obtuvo el promedio.

Peso de cien granos: Se tomaron tres muestras de trescientos granos, provenientes de los rendimientos de cada parcela, y se determinó su peso en gramos ajustado al 14 % de humedad. Luego se obtuvo el valor promedio de peso de cien granos.

Rendimiento de grano: Se obtuvo la producción de grano de cada una de las parcelas, se determinó el peso (kg/ha), y el resultado fue ajustado al 14 % de humedad.

2.6 Análisis estadístico

Los datos procedentes de las variables en el cultivo se sometieron a análisis de varianza (ANDEVA) y comparaciones de medias a través de LSD (alpha = 0.05). Para variables de rendimiento se compararon las medias a través de pruebas planeadas. En todos los casos se utilizó el programa estadístico SAS. Los datos procedentes de malezas se presentan en Figuras, tomando las medias de cada tratamiento. El análisis se realizó de forma descriptiva.
2. Análisis económico

Se realizó un análisis económico de los tratamientos evaluados para determinar el momento más allá del cual resulta innecesario el realizar los controles de malezas. En el análisis se consideraron los siguientes parámetros:

Costos fijos: Incluye los costos de limpieza del terreno, preparación del suelo (surcido), fertilización al momento de la siembra y cantidad de semilla.

Costos variables: Implica cada uno de los tratamientos evaluados (labores de control manual de malezas).

Costos totales: La suma de los costos fijos y costos variables.

Rendimiento: La producción de cada uno de los tratamientos expresado en kg /ha.

Ingreso bruto: El rendimiento de cada uno de los tratamiento por el precio del producto en el mercado al momento de la cosecha.

Ingreso neto: El ingreso bruto menos los costos totales de producción.
III. RESULTADOS Y DISCUSION

3.1. Influencia de periodos de control sobre el comportamiento y dinámica de las malezas

3.1.1. Diversidad de malezas

La diversidad es la variedad de especies que se encuentran en un área determinada. El conocimiento de la diversidad es de suma importancia ya que sobre la base de ella se puede determinar cuales son las especies que se localizan en una determinada área, además permite saber si las especies aumentan o disminuyen al desarrollar una práctica (Pitty, 1997).

En el experimento se identificaron trece especies de malezas compitiendo con el cultivo, de éstas, cinco pertenecen a la clase monocotiledónea (cuatro pertenecen a las Poaceae y una a las Cyperaceae). El resto de las especies (8 en total) pertenecen a la clase dicotiledónea (cuatro son de la familia Euphorbiaceae, dos de las Asteraceae, una de cada una de las familias Malvaceae y Papaveraceae) (Tabla 7).

Las especies de malezas con mayor frecuencia fueron las monocotiledóneas, entre ellas Cynodon dactylon (L.) Pers. (Zacate gallina) y Sorghum halepense (L.) Pers. (Invasor) de la familia Poaceae, Cyperus rotundus L. (coyolillo) de la familia Cyperaceae. En la clase dicotiledóneas predominaron Euphorbia heterophylla L. (pastorcita) de la familia Euphorbiaceae, seguida de Argemone mexicana L. (cardo santo) de la familia Papaveraceae y Tithonia tubaeformis (Jacq) Cass (jalacate) de la familia Asteraceae. En la Tabla 7, se presenta el listado de malezas encontradas a lo largo del experimento.
Tabla 7 Influencia de periodos de control de malezas sobre la diversidad de las malezas a la madurez fisiológica del cultivo del frijol común La Compañía, postrera 1997

<table>
<thead>
<tr>
<th>Diversidad de malezas</th>
<th>Familia</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynodon dactylon (L.) Pers.</td>
<td>Poaceae</td>
<td>Zacate gallina</td>
</tr>
<tr>
<td>Sorghum halepense (L.) Pers.</td>
<td>Poaceae</td>
<td>Invasor</td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>Cyperaceae</td>
<td>Coyolillo</td>
</tr>
<tr>
<td>Sida acuta Burm F.</td>
<td>Malvaceae</td>
<td>Escoba</td>
</tr>
<tr>
<td>Euphorbia heterophylla L.</td>
<td>Euphorbiaceae</td>
<td>Pastorcita</td>
</tr>
<tr>
<td>Argemone mexicana L.</td>
<td>Papaveraceae</td>
<td>Cardo santo</td>
</tr>
<tr>
<td>Thitonía tubaciformis (Jacq.) Cass</td>
<td>Asteraceae</td>
<td>Jalacate</td>
</tr>
<tr>
<td>Melantera aspera (Jacquin) L.C</td>
<td>Asteraceae</td>
<td>Totolqueite</td>
</tr>
<tr>
<td>Phyllanthus nimuri L.</td>
<td>Euphorbiaceae</td>
<td>Tamarindillo</td>
</tr>
<tr>
<td>Euphorbia graminea (L.) Jacq</td>
<td>Euphorbiaceae</td>
<td>Leche-trezna</td>
</tr>
<tr>
<td>Panicum maximum L.</td>
<td>Poaceae</td>
<td>Pasto guinea</td>
</tr>
<tr>
<td>Ixophorus unisetus (K.Persl) Schelecht</td>
<td>Poaceae</td>
<td>Zacate dulce</td>
</tr>
<tr>
<td>Chamaesyce hirta (L.) Mills Paugh</td>
<td>Euphorbiaceae</td>
<td>Leche de sapo</td>
</tr>
</tbody>
</table>

3.1.2 Abundancia de malezas

Esta variable se define como el número de individuos (malezas) por unidad de área (Alemán, 1991). La abundancia no refleja realmente la competitividad de las especies si no que está regida por la distribución de las especies y las condiciones en las que se encuentren para germinar en cualquier área.

El recuento efectuado a los 63 días después de la siembra, muestra que la menor abundancia de dicotiledóneas se obtuvo en el tratamiento que recibió control de malezas durante 35 días. Este tratamiento recibió cuatro controles de malezas. La mayor abundancia de dicotiledóneas la presentó el tratamiento que recibió control de malezas durante 28 días después de la siembra. En este tratamiento se realizaron tres prácticas de controles de malezas.

En la evaluación para malezas dicotiledóneas el análisis nos muestra diferencias estadísticas entre los tratamientos evaluados. El tratamiento cuatro (28 días de control) obtuvo mayor
La abundancia de malezas, seguido de los tratamientos que recibieron control de malezas durante 21 y 14 días después de la siembra.

La abundancia de malezas de hoja ancha fue superior a malezas de hoja fina, en investigaciones anteriores se ha reportado este comportamiento en plantaciones de frijol común bajo sistema tradicional de siembra (Daxl, 1987 & Alemán, 1989).

La mayor abundancia de malezas monocotiledóneas se obtuvo en el tratamiento tres, el cual recibió dos controles de malezas. El tratamiento con menor abundancia de malezas monocotiledóneas fue el tratamiento que recibió control durante 35 días después de la siembra, el cual no presenta malezas monocotiledóneas.

Los tratamientos que recibieron control durante 14 y 42 días después de la siembra presentaron promedios iguales de malezas monocotiledóneas, aún cuando hallan recibido un solo control en el caso del tratamiento dos, y cinco controles para el caso del tratamiento seis. El tratamiento emnalezado siempre presentó bajo promedio de malezas monocotiledóneas, evidenciando que en sistemas de producción de frijol común, bajo competencia total de malezas prevalecen las malezas dicotiledóneas.

En cuanto a la abundancia total de malezas, se encontró que el tratamiento de menor abundancia de malezas fue el tratamiento con control durante 35 días. El tratamiento con mayor abundancia de malezas fue el tratamiento con control durante 28 días, el cual presentó una alta abundancia de malezas dicotiledóneas. En segundo lugar se ubica el tratamiento con control durante 21 días después de la siembra, el cual presentó la mayor abundancia de malezas monocotiledóneas (Figura 2).

En general se puede afirmar que no existe una tendencia clara de la respuesta del número de individuos de malezas a variadas intensidades de control de malezas. El muestreo fue realizado a los 63 días después de la siembra, los individuos de malezas se encontraban en diferentes estados de desarrollo ya que provenían de diferentes fechas de control.
Aquellos tratamientos con controles tempranos (enmalezado, 14 días de control) tienden a presentar menor número de individuos ya que las malezas que se establecieron han desplazado a las más débiles. En cambio tratamientos con controles recientes presentan malezas con desarrollo inmaduro, donde aún prevalecen la mayoría de las malezas emergidas.

![Gráfico de barras](image)

Figura 2. Influencia de los períodos de control sobre la abundancia de malezas. La Compañía Postrera, 1997.

3.1.3. Cobertura de malezas

En la evaluación de cobertura de malezas, el análisis muestra que no existe diferencias significativas entre tratamientos. La mayor cobertura la presento el tratamiento enmalezado, seguido de los tratamientos con controles durante 21, 28, 14 y 35 días después de la siembra. Los tratamientos con control de malezas durante 49 y 42 días después de la siembra presentaron el menor cubrimiento de malezas (Figura 3).

Los tratamientos con control 21, 28 y 35 días después de la siembra presentan similar cobertura de malezas. Al final del ciclo del cultivo existe cierta acumulación de malezas en estos tratamientos, sin embargo los rendimientos de grano obtenidos por estos tratamientos son similares a los obtenidos por períodos más prolongados de control.
Por tanto la presencia de dichas malezas al final del ciclo del cultivo no afecta la producción de grano.

El tratamiento enmalezado presenta cobertura de malezas superior al 50 %, evidenciando que si no se realiza control de malezas en frijol común las malezas sobrepasan al cultivo y dominan en el área muy por encima de las plantas cultivadas.

![Gráfico de Porcentaje de Enmalezamiento](image)

Figura 3 Influencia de los periodos de control de malezas sobre la cobertura de malezas. La Compañía Carazo Postrera, 1997.

3.2. Influencia de períodos de control sobre el crecimiento y el rendimiento del cultivo del frijol común

3.2.1 Altura de planta en frijol

La altura de plantas en cultivo de frijol es muy importante por la competencia interespecífica que puede darse entre el cultivo y las malezas, por la sanidad de las primeras vainas y por la relación existente con el rendimiento (Blandón & Arbizú, 1991). La altura de planta es una característica varietal, genética y ambiental. Es el resultado del número de nudos y longitud de los entrenudos. Uno de los factores que afectan la altura de plantas, es la competencia causada por las malezas, según Enyi (1973), la altura de planta es inversamente proporcional a la abundancia de las malezas.
En la primera evaluación de altura de planta del frijol, el análisis muestra que existe diferencias significativas entre los periodos de control de malezas. La mayor altura la presentó el tratamiento enmalezado. Los restantes tratamientos muestran valores de similares cuan a la altura de plantas, siendo los de menor altura los tratamientos que recibieron mayores controles de malezas (Tabla 8).

El análisis de la información obtenida en la segunda observación muestra que existe diferencias significativas entre los periodos de control de malezas. La mayor altura se presentó siempre en el tratamiento enmalezado. Los restantes tratamientos se comportan de manera similar (Tabla 8). En la tercera evaluación de altura de plantas, el análisis muestra que existe diferencias significativas entre los periodos de control de malezas, observándose la mayor altura en el tratamiento enmalezado. Los restantes tratamientos se comportaron de forma similar, a excepción del tratamiento con control 35 días después de la siembra, el cual muestra menor altura (Tabla 8).

La competencia de las malezas influye sobre la altura de la planta cultivada, la presión de las malezas induce a la planta a una mayor altura, los tallos se elongan en busca de la luz solar, lo cual es una característica indeseable ya que ello produce un debilitamiento en la planta, haciéndola más susceptible al volcamiento y restándole eficiencia en la producción de grano.
Tabla 8. Influencia de los periodos de control de maleza sobre la altura del cultivo del frijol común.
La Compañía Postrera, 1997.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>21 dds</th>
<th>35 dds</th>
<th>49 dds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>T_1</td>
<td>31.48</td>
<td>50.73</td>
<td>59.00</td>
</tr>
<tr>
<td>T_2</td>
<td>29.30</td>
<td>45.68</td>
<td>54.08</td>
</tr>
<tr>
<td>T_3</td>
<td>28.98</td>
<td>47.15</td>
<td>55.05</td>
</tr>
<tr>
<td>T_4</td>
<td>28.58</td>
<td>44.08</td>
<td>53.65</td>
</tr>
<tr>
<td>T_5</td>
<td>27.93</td>
<td>43.55</td>
<td>51.53</td>
</tr>
<tr>
<td>T_6</td>
<td>27.75</td>
<td>44.03</td>
<td>52.25</td>
</tr>
<tr>
<td>T_7</td>
<td>27.33</td>
<td>43.35</td>
<td>52.20</td>
</tr>
<tr>
<td>DMS=</td>
<td>1.394</td>
<td>4.5346</td>
<td>5.4508</td>
</tr>
<tr>
<td>CV</td>
<td>3.26</td>
<td>6.70</td>
<td>6.79</td>
</tr>
</tbody>
</table>

DMS: Diferencias significativas mínima
dds: Días después de siembra

3.2.2 Número de vainas por planta

Esta variable es uno de los parámetros que más relación tiene con el rendimiento y esta en dependencia del número de flores que tenga la planta (Tapia, 1987 & Whiter,1985). Díaz & Aguilar (1984), afirman que el frijol sembrado a mayor distancia presenta un número mayor de vainas por planta, ocasionada por un posible mayor número de ramas.

La determinación del número de vainas por planta fue realizada en dos momentos durante el ciclo del cultivo, la primera al momento de la madurez fisiológica del cultivo y la segunda al momento de la cosecha.

Ambos muestreos indican diferencias estadísticas entre los períodos de control de malezas. A la madurez fisiológica del cultivo, el menor número de vainas por planta lo obtuvo el tratamiento enmalezado siempre. Los restantes tratamientos muestran promedios similares, no existiendo diferencias estadísticas entre ellos. Los resultados obtenidos al momento de la cosecha muestran diferencias entre los períodos de control de malezas. Una vez más el
menor número de vainas se obtuvo en el tratamiento enmáezado, los restantes tratamientos presentan similar comportamiento y no difieren entre ellos (Tabla 9).

3.2.3 Número de ramas por planta

Este parámetro es de gran importancia ya que además del efecto que ejercen sobre el control de malezas, constituye un componente importante en la productividad del cultivo al incidir directamente en el número de vainas por planta (Guerrero & Suazo, 1993).

El análisis de varianza de esta variable muestra diferencias significativas entre los períodos de control de malezas. Los tratamientos con menor número de controles de malezas presentan el menor número de ramas por planta. El valor se acrecienta cuando el cultivo recibió más allá de tres controles de malezas (Tabla 9).

3.2.4 Altura de inserción a la primera vaina

Esta variable es importante, sobre todo para sistema de producción mecanizada ya que la cosecha se localiza en un sólo estrato con posición de vainas bien arriba de la superficie del suelo, además que hay mejor uniformidad en la madurez y secado de las vainas (Tapia, 1987).

En la Tabla 9 se observa que el análisis de varianza muestra que no existe diferencias estadísticas significativas en la altura de inserción a la primera vaina en el tratamiento evaluados. El tratamiento enmáezado mostró la mayor longitud de inserción a la primera vaina.

3.2.5 Peso de cien granos

El peso del grano demuestra la capacidad de trasladar nutrientes acumulados al grano en la etapa reproductiva (Zapata & Orozco, 1991). Esta variable es influenciada por factores ambientales como: nutrientes, humedad, luz y espacio, lo que condiciona que no se demore
el crecimiento de las partes del órgano de la flor, dando como resultado un mayor desarrollo del grano y un mayor peso del mismo (Palma, 1993).

Los datos obtenidos para esta variable indican que no existen diferencias estadísticas significativas entre tratamientos. El mayor peso de grano lo presentó el tratamiento enmazado y el menor el tratamiento que recibió seis controles de malezas (Tabla 9). La variable peso de los granos no fue afectado por los periodos de control de malezas, no aportando un efecto positivo a los tratamientos de mejor comportamiento en el presente experimento.

Tabla 9 Influencia de los períodos de control de malezas sobre el número de vainas/plnt, ramas/plnt, altura de inserción y peso de 100 granos. La compañía, Postrera, 1997.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>Vainas/ Planta</th>
<th>Ramas/ Planta</th>
<th>Altura de Inserción cm</th>
<th>Peso de 100 Grano g</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>4.13</td>
<td>4.85</td>
<td>2.18</td>
<td>21.25</td>
</tr>
<tr>
<td>T2</td>
<td>6.13</td>
<td>7.33</td>
<td>2.33</td>
<td>20.49</td>
</tr>
<tr>
<td>T3</td>
<td>7.77</td>
<td>9.44</td>
<td>2.18</td>
<td>20.95</td>
</tr>
<tr>
<td>T4</td>
<td>5.57</td>
<td>6.79</td>
<td>2.78</td>
<td>20.46</td>
</tr>
<tr>
<td>T5</td>
<td>6.40</td>
<td>7.38</td>
<td>2.65</td>
<td>19.98</td>
</tr>
<tr>
<td>T6</td>
<td>6.03</td>
<td>7.13</td>
<td>2.68</td>
<td>20.98</td>
</tr>
<tr>
<td>T7</td>
<td>6.46</td>
<td>7.21</td>
<td>2.70</td>
<td>19.58</td>
</tr>
</tbody>
</table>

DMS= 2.39 3.08 0.48 NS
CV 26.45 28.88 13.01 7.03

DMS: Diferencia significativa mínima

3.2.6 Rendimiento del grano de frijol

El rendimiento depende del genotipo de la variedad, de la ecología y del manejo a que se somete el cultivo (Tapia & Camacho, 1988). Campton (1985), afirma que el rendimiento del grano es el resultado de un gran número de factores biológicos y ambientales que se correlacionan entre sí para luego expresarse en producción por hectárea.
El análisis de varianza muestra que existe diferencias significativas entre los periodos de control de malezas. El mejor promedio se obtuvo en el tratamiento que recibió control de malezas durante 35 días después de la siembra.

Este tratamiento no difiere de los tratamientos con control 21, 28, 42 y 49 días después de la siembra, pero sí del tratamiento enmazleado y del tratamiento con control durante 14 días después de la siembra.

Los resultados del presente experimento coinciden con los reportados por Lacayo (1997), trabajando con la misma variedad (DOR-364) y Alemán (1988), quienes reportan que el frijol necesita 21 días libres de malezas para no ver afectados sus rendimientos y difieren de los reportados por Ohlander (1980), quien trabajó en la determinación de periodos críticos de competencia de malezas utilizando variedades de ciclo largo.

De los resultados del presente experimento se desprende que un control temprano (14 dds) no es suficiente para evitar la competencia de parte de las malezas, por el contrario un posterior control a los 21 días después de la siembra es suficiente para permitir buenos rendimientos de grano (Tabla 10). La época crítica de competencia de las malezas se ubica en etapas tempranas de desarrollo del cultivo, lo anterior corrobora lo expresado por Alemán (1989), quien afirma que para obtener buenos rendimientos de grano en frijol común se debe evitar la presencia de las malezas posterior al día 21 después de la siembra. sucesivo a ese momento el frijol cierra calle y ejerce su propio control de las malezas.

Lo anterior indica que con la implementación del control de las malezas a los 21 días después de la siembra (aparición de la tercera hoja trifoliada), se permite condiciones libres de malezas en etapas inmediatas, en las cuales está ubicado el período crítico de competencia.
3.2.7 Peso seco de la planta de frijol

El peso de paja de frijol guarda estrecha relación con el rendimiento, una mayor acumulación en el peso de paja es producto de una mayor acumulación de materia seca incrementando así la producción de grano. Además es de importancia para la alimentación animal, ya que los residuos de la cosecha puede utilizarse como forraje, rico en materia orgánica.

De acuerdo al análisis estadístico, existieron diferencias estadísticas significativas entre los períodos de control de malezas en cuanto a la acumulación de materia seca en las plantas de frijol. El tratamiento enmamezado presenta el menor peso de paja, el cual fue significativamente diferente del resto de tratamientos. El tratamiento con 14 días de control de malezas presenta buena acumulación de materia seca, siendo su valor similar al resto de tratamientos (Tabla 10).

<table>
<thead>
<tr>
<th>TRAT</th>
<th>Rendimiento kg/ha</th>
<th>Peso seco del frijol kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>731.50</td>
<td>764.5</td>
</tr>
<tr>
<td>T_2</td>
<td>995.90</td>
<td>1286.8</td>
</tr>
<tr>
<td>T_3</td>
<td>1208.20</td>
<td>1353.8</td>
</tr>
<tr>
<td>T_4</td>
<td>1257.20</td>
<td>1327.5</td>
</tr>
<tr>
<td>T_5</td>
<td>1310.80</td>
<td>1296.5</td>
</tr>
<tr>
<td>T_6</td>
<td>1242.40</td>
<td>1334.1</td>
</tr>
<tr>
<td>T_7</td>
<td>1270.90</td>
<td>1442.2</td>
</tr>
</tbody>
</table>

DMS= 228.21 38.86
CV 13.41 20.79

DMS= Diferencia significativa mínima
3.3 Análisis económico

3.3.1 Análisis de presupuesto parcial

Según CIMMYT (1988), el paso inicial al efectuar un análisis económico de los ensayos en campo es calcular los costos que variarán con cada tratamiento, en otras palabras los costos relacionados con los insumos, la mano de obra y la maquinaria que varían de un tratamiento a otro. A este análisis económico se le llama análisis de presupuesto parcial.

Los costos variables en el presente experimento se limitaron a las prácticas de control de malezas, así por ejemplo el costo variable del tratamiento dos (control durante 14 días después de la siembra) fue de 160 córdobas, que implica la limpieza mecánica de una hectárea de frijol. El tratamiento tres (control a los 21 días después de la siembra) recibió dos controles de malezas, por tanto sus costos variables son el costo de una limpieza (160 córdobas por hectárea) multiplicado por dos.

Los rendimientos fueron ajustados a un 10 %, con el fin de comparar el rendimiento experimental con el rendimiento que pueda obtener el productor utilizando la misma técnica.

El rendimiento ajustado fue multiplicado por el precio del producto (C$ 6.66 por kg) para obtener el beneficio bruto. Al valor obtenido se le resta el total de costos variables para obtener los beneficios netos (Tabla 11).

Los resultados obtenidos en el análisis de presupuesto parcial en el presente experimento, muestran que los mayores costos variables se obtuvieron en los tratamientos que recibieron control de malezas durante 42 y 49 días después de la siembra. El mayor beneficio neto se obtuvo en el tratamiento con control de malezas durante 35 y 28 días después de la siembra (Tabla 11).
Tabla 11 Análisis de presupuesto parcial realizados a los tratamientos evaluados. La compañía, Carazo. Postrera 1997.

<table>
<thead>
<tr>
<th>Trata.</th>
<th>Costos Variables C$</th>
<th>Costo Total C$</th>
<th>Red. (kg/ha)</th>
<th>Ajuste 10 %</th>
<th>Red. ajustado kg/ha</th>
<th>Beneficio bruto C$</th>
<th>Beneficio neto C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>0.00</td>
<td>0.00</td>
<td>731.5</td>
<td>73.2</td>
<td>658.3</td>
<td>4384.3</td>
<td>4384.3</td>
</tr>
<tr>
<td>T₂</td>
<td>160.0</td>
<td>227.2</td>
<td>995.9</td>
<td>99.6</td>
<td>896.3</td>
<td>5969.4</td>
<td>5742.2</td>
</tr>
<tr>
<td>T₃</td>
<td>320.0</td>
<td>454.4</td>
<td>1208.2</td>
<td>120.8</td>
<td>1087.4</td>
<td>7242.1</td>
<td>6787.7</td>
</tr>
<tr>
<td>T₄</td>
<td>480.0</td>
<td>681.6</td>
<td>1257.2</td>
<td>125.7</td>
<td>1131.5</td>
<td>7535.8</td>
<td>6854.2</td>
</tr>
<tr>
<td>T₅</td>
<td>640.0</td>
<td>908.8</td>
<td>1310.8</td>
<td>131.1</td>
<td>1179.7</td>
<td>7856.8</td>
<td>6948.0</td>
</tr>
<tr>
<td>T₆</td>
<td>800.0</td>
<td>1136.0</td>
<td>1242.4</td>
<td>124.2</td>
<td>1118.2</td>
<td>7447.2</td>
<td>6311.2</td>
</tr>
<tr>
<td>T₇</td>
<td>960.0</td>
<td>1363.2</td>
<td>1270.9</td>
<td>127.1</td>
<td>1143.8</td>
<td>7617.7</td>
<td>6254.5</td>
</tr>
</tbody>
</table>

3.3.2 Análisis de dominancia

Un tratamiento es dominado por otro tratamiento, cuando tiene mayores costos variables y beneficios netos menores o iguales al tratamiento en comparación.

El análisis de dominancia muestra que existe dos tratamientos dominados (control de malezas durante 42 y 49 días después de la siembra). Los tratamientos no dominados fueron el totalmente enmalezado y los tratamientos que recibieron control de malezas durante 14, 21, 28 y 35 días después de la siembra (Tabla 12).

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Costos variables (C$/ha)</th>
<th>Beneficio Neto (C$/ha)</th>
<th>Dominancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>0.0</td>
<td>4384.3</td>
<td>ND</td>
</tr>
<tr>
<td>T₂</td>
<td>227.2</td>
<td>5742.2</td>
<td>ND</td>
</tr>
<tr>
<td>T₃</td>
<td>454.4</td>
<td>6787.7</td>
<td>ND</td>
</tr>
<tr>
<td>T₄</td>
<td>681.6</td>
<td>6854.2</td>
<td>ND</td>
</tr>
<tr>
<td>T₅</td>
<td>908.8</td>
<td>6948.0</td>
<td>ND</td>
</tr>
<tr>
<td>T₆</td>
<td>1136.0</td>
<td>6311.2</td>
<td>D</td>
</tr>
<tr>
<td>T₇</td>
<td>1363.2</td>
<td>6254.5</td>
<td>D</td>
</tr>
</tbody>
</table>
3.3.3 Análisis de retorno marginal

El análisis marginal realizado a los tratamientos no dominados se presenta en la (Tabla 13). El resultado muestra que el cambiar del tratamiento totalmente enmalezado a control durante 14 días después de la siembra se obtiene una tasa de retorno marginal de 598.19 %, y al pasar de éste tratamiento al tratamiento en control a los 21 días después de la siembra se obtiene una tasa de retorno marginal de 460.57 % (Tabla 13).

El hecho de invertir C$ 227.2 haciendo sólo un control de malezas se obtiene una ganancia de C$ 5.91 por cada córdoba invertida, y al invertir nuevamente 227 córdobas en un control adicional de malezas a los 21 días después de la siembra proporciona una ganancia de C$ 4.55 por cada córdoba invertido. En cambio un nuevo control de malezas a los 28 días después de siembra proporciona únicamente una tasa de retorno marginal de 29.29 la cual esta muy por debajo de la tasa de retorno mínimo para estos casos que son de 100 % (CIMMYT, 1988).

Los resultados muestran que desde el punto vista económico es conveniente el control de las malezas, sin embargo la inversión de un control de malezas en etapas tempranas de desarrollo del cultivo (14 dds) no es suficiente, para reducir la competencia de las malezas, es necesario un control de malezas adicional (21 dds) para obtener mejores ingresos económicos. La inversión de dinero en controles de malezas posterior a los 21 después de siembra no trae ventajas desde el punto de vista económico. Las tasas de retorno de los tratamientos con control de malezas durante 28 y 35 días después de siembra son mínimas. Controles de malezas posterior a los 21 días son innecesarios y pueden aumentar los costos de producción.

Lo antes mencionado indica que el tratamiento en control a los 14 días después de la siembra presenta la mayor tasa de retorno marginal, sin embargo el tratamiento de comparación es el tratamiento enmalezado. El tratamiento con control hasta los 21 días después de la siembra presenta la tasa de retorno más aceptable, siendo éste tratamiento el más recomendable para el caso del frijol común (Tabla 13).
Los resultados del presente experimento indican que el frijol común necesita estar libre de malezas durante 21 días para no ver afectado sus rendimientos. El período referido está íntimamente asociado a la aparición de la tercera hoja trifoliada (Alemán, 1989), es en ese momento donde deben realizarse las medidas encaminadas a reducir las malezas de los campos de frijol común. Controles de malezas posterior a dicho período pueden resultar innecesarios ya que la competencia real entre malezas y el cultivo se encuentra en etapas inferiores en el desarrollo de la planta. Por otro lado cualquier medida en dichos momentos puede incrementar los costos de producción.

Tabla 13. Análisis de retorno marginal de los tratamientos en Estudio. La Compañía Postrera, 1997.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Costos Variables C$</th>
<th>Costos Variables Marginales C$</th>
<th>Beneficio netos C$</th>
<th>Beneficios Netos Marginales C$</th>
<th>Tasa retorno marginal %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>0.00</td>
<td>0</td>
<td>4384.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₂</td>
<td>227.20</td>
<td>227</td>
<td>5742.2</td>
<td>1357.9</td>
<td>598.19</td>
</tr>
<tr>
<td>T₃</td>
<td>454.40</td>
<td>227</td>
<td>6787.7</td>
<td>1045.5</td>
<td>460.57</td>
</tr>
<tr>
<td>T₄</td>
<td>681.60</td>
<td>227</td>
<td>6854.2</td>
<td>66.5</td>
<td>29.29</td>
</tr>
<tr>
<td>T₅</td>
<td>908.80</td>
<td>227</td>
<td>16948.0</td>
<td>93.8</td>
<td>41.32</td>
</tr>
</tbody>
</table>
IV. CONCLUSIONES

Los resultados del presente experimento permiten las siguientes conclusiones:

➢ Se reportan trece especies de malezas competiendo con el cultivo, cinco pertenecen a las monocotiledóneas y ocho a las dicotiledóneas.

➢ No existe una tendencia clara de la respuesta del número de individuos de malezas a variadas intensidades de control de malezas. Los tratamientos con controles tempranos tienden a presentar menor número de individuos. En cambio tratamientos con controles recientes presentan malezas con desarrollo inmaduro.

➢ La competencia de las malezas influye sobre la altura de la planta cultivada. La altura de planta en el cultivo de frijol se incrementa a medida que aumenta el período de competencia con las malezas.

➢ Un control temprano de malezas (14 dds) no es suficiente para evitar la competencia de parte de las malezas. Un posterior control a los 21 días después de la siembra es suficiente para permitir buenos rendimientos de grano.

➢ Para el caso del frijol común las labores de control de malezas deben realizarse en el período próximo a la aparición de la tercera hoja trifoliada, y no llevarse más allá de dicho momento.

➢ El tratamiento con control hasta los 21 días después de la siembra presenta la tasa de retorno económico más aceptable.
V. RECOMENDACIONES

Las labores de control de malezas en frijol común deben de estar basadas en el principio de período crítico de competencia de las malezas en el cultivo de interés. Para el caso de frijol común, toda labor de control debe realizarse hasta la aparición de la tercera hoja trifoliada.

Evitar realizar los controles de malezas al momento de la floración, ya que el rendimiento se reduce significativamente y los costos se elevan elocuentemente.

Toda recomendación de periodo crítico de competencia de malezas debe ser determinada en cada condición específica, utilizando las variedades propias de la zona y las prácticas normales que realiza el productor.

Determinar los momentos más adecuados para el control de las malezas en las diferentes condiciones agroecológicas del país.
VI. REFERENCIAS BIBLIOGRÁFICAS

Daxl, R. 1987. Relaciones e influencias de las malezas con otros factores que afectan los cultivos. GTZ. - SAVE/MIDINRA. Conferencia presentada en el taller de entrenamiento en manejo mejorado de malezas. 5 p.

