UNIVERSIDAD NACIONAL AGRARIA

FACULTAD DE AGRONOMIA PROGRAMA DE RECURSOS GENETICOS NICARAGUENSES ESCUELA DE PRODUCCION VEGETAL

TRABAJO DE DIPLOMA

CARACTERIZACION Y EVALUACION PRELIMINAR DE 261 ACCESIONES DE FRIJOL COMUN (*Phaseolus vulgaris* L.) RECOLECTADAS EN DIFERENTES LOCALIDADES DE NICARAGUA

Autores:

Br. Jessenia Barrera Torres Br. Jaime Alvarez Acevedo

Asesor:

Ing. Agr. MSc. Vidal Marin Fernández

MANAGUA, NICARAGUA DICIEMBRE, 1998

AGRADECIMIENTO

Al Ing. : Vidal Marín Fernández, por su valioso asesoramiento en la realización de

este trabajo.

A Los Ings : Aurelio Llanos y Julio Obando,

Al Ing. : Alvaro Benavidez, por su inmenso apoyo durante toda la ejecución de este

trabajo.

Al Lic. : César Cajina por sus valiosas traducciones y su gran apoyo en la

realización de ésta tésis.

A las Srias : Carolina Padilla y Lidia Madrigal por la paciente atención brindada en la

búsqueda de literatura.

A LA UNA : Principalmente a la Facultad de Agronomía por todo lo brindado en el

travecto de la carrera.

AL REGEN: Por todos sus aportes brindados.

Al INTA : Por brindarnos la oportunidad de realizar este ensayo.

JESSENIA BARRERA TORRES
JAIME ALVAREZ ACEVEDO

DEDICATORIA

A DIOS : Por darme la vida, la Fé, la esperanza y la oportunidad

de realizarme como profesional.

A MIS PADRES : Antonio Barrera y Concepción Torres, quienes me han motivado

a seguir adelante.

A MIS HERMANOS(AS): Jimmy, Elizabeth, José Antonio, Rodolfo, Janilda, Bismark y Martha. Por el apoyo emocional y ecónomico brindado durante mis estudios profesionales.

A MIS SOBRINOS(AS): Hazzell, Joseling, Sujey, Heydy, Meril, Bielka, Marjury, Jeferson, Jimmito y Hamilton. por ser mi gran inspiración.

Al Matrimonio : Margine Flores y Juaquín Balmaceda, por el inmenso apoyo y las

motivaciones brindadas en mi vida.

A MIS AMIGOS(AS) :Zayda, Jamila, Jamileth, Xochilt, Eufrecia, Sandra, Linett y Juan

Ramón, por la bella amistad que nos brindamos.

JESSENIA MARJURY BARRERA TORRES

INDICE GENERAL

Sec	cion	ag.
Ind	ice de Figuras	. i
Ind	ice de Tablas	. ii
Res	umen	iii
I-	Introducción	. 1
II-	Materiales y métodos	. 3
	2.1- Ubicación del experimento	. 3
	2.2- Diseño experimental	. 4
	2.3- Labores de manejo del cultivo	. 5
	2.3.1-Preparación del suelo	5
	2.3.2-Siembra	. 5
	2.3.3-Control de malezas	. 5
	2.3.4-Control de plagas	. 5
	2.4- Material biológico	. 6
•	2.5- Variables a evaluar	. 6
	Floración	. 6
	Madurez fisiológica	. 7
	Cosecha	9
	Semilla	9
:	2.6- Metodología de medición y registro	10
	2.6.1-Escalas y códigos utilizados	11
	2.6.2-Tamaño de la muestra	11

2.7- Metodología de análisis	ļ
2.7.1-Análisis para la caracterización	l
2.7.2.Análisis de variación	
2.7.3. Análisis de los descriptores de enfermedad	
III- Resultados y Discusión	ļ
3.1. Caracterización)
3.1.1. Características de la flor	2
Color primario de las alas	2
Color secundario de las alas	2
Patrón del color secundario de las alas	3
Color de las Venas en las alas	1
Color primario del estandarte	1
Color secundario del estandarte	1
Patrón del color secundario del estandarte	5
Color de tubo del cuello del estandarte	5
3.1.2 Características de la vaina	5
Color de la Vaina	5
Patrón del color de la vaina	7
Posición del pico de la vaina	7
Tipo de vaina	7
Lóculos por vaina	8
Longitud de la vaina)
3.1.3. Características de la semilla)
Color primario de la semilla)

Color del jaspe o moteado
Forma de la semilla
Brillo de la semilla
3.1.4. Hábito de crecimiento
3.1.5. Número de nudos en el tallo a la primera rama
3.2. Evaluación preliminar
Inicio de floración
Fin de la floración
Madurez Fisiológica 2
Duración de la floración y del ciclo reproductivo
Cosecha
3.3. El Rendimiento y sus componentes
Número de vainas por planta
Número de semillas por vaina
Peso de 100 semillas
Rendimiento Relativo 3
3.4. Evaluación Adicional
IV- Conclusiones
V- Recomendaciones
VI- Referencias Bibliográficas 3
VII- Anexos

INDICE DE FIGURAS

Figura	
1.	Precipitación en pentada en la Estación Experimental "La Compañía"(mm) durante la época de primera de 1995
2.	Temperaturas promedios (°C) y humedad Relativa (%) en pentadas de la Estación Experimental "La Compañía" durante el experimento
3.	Variación en el color primario de las alas (C1ALA), color secundario de las alas (C2ALA), patrón del color secundario de las alas (PC2ALA) y color de las venas en las alas (CVALA) de 261 accesiones de frijol común
4.	Variación en el color primario del estandarte (C!EST), color secundario del estandarte (C2EST), patrón del color secundario del estandarte (PC2EST) y color del tubo del cuello del estandarte (CTUBCE) de 261 accesiones de frijol común
5.	Variación en el color de la vaina(CVAINA), patrón del color de la vaina (PCVAI), posición del pico de la vaina (PPVAI), tipo de vaina (TVAINA) y lóculos por vaina (LOCVAINA) de 261 accesiones de frijol común.
6.	Variación en la longitud de vaina de 261 accesiones de frijol común
7.	Variación en el color primario de la semilla (CPSEM), color del jaspe o moteado (CjoM), forma de la semilla (FSEM), y brillo de la semilla (BRISEM) de 261 accesiones de frijol común.
8.	Tipos de Hábitos de crecimiento encontrados en las 261 accesiones de frijol común 24
9.	Número de nudos en el tallo a la primera rama de 261 accesiones de frijol común 25
10.	Días a Inicio de floración (INFLOR), fin de la floración (FINFLOR), Madurez fisiológica (MADFIS) y cosecha de 261 accesiones de frijol común
11.	Número de días en la duración de la floración (DURFLOR) y ciclo reproductivo (DURCICLO) de 261 accesiones de frijol común
12.	Número de semillas por vaina (SEN/VAINA) y vainas por planta (VAINA/PLANTA) de 261 accesiones de frijol común
13.	Variación en el peso de 100 semillas de 261 accesiones de frijol común

INDICE DE TABLAS

Tabla F	Pág.
1- Escala de severidad de las enfermedades	
Mancha Angular y Mustia Hilachosa encontradas	
en la Estación experimental "La Compañía"	
en frijol común.	. 35
2- Correlaciones de Pearson entre las	
261 accesiones de frijol común evaluadas	
en la estación experimental "La Compañía".	
(Carazo, en primera de 1995)	125

Resumen

El experimento fue establecido en la estación experimental "La Compañía", San Marcos, departamento de Carazo, Nicaragua, durante la época de primera (junio- agosto) de 1995, con el propósito de caracterizar y evaluar preliminarmente el comportamiento de 261 accesiones de frijol común (Phaseolus vulgaris L.) recolectadas en diferentes zonas de Nicaragua por el Programa de Recursos Genéticos Nicaraguense (REGEN) de la Universidad Nacional Agraria (UNA). Los testigos utilizados fueron las variedades DOR-364 y Compañía-93. El diseño empleado fue el de ensayo preliminar, el cual consistió de un surco por accesión de 4 m de longitud. En la caracterización se obtubieron los siguientes resultados, se observó variación de colores en alas y estandarte (blanco, púrpura, rosado y lila), en carácteres de vaina se observaron diferentes colores (amarillo, crema, anaranjado, café, rojo, rosado, violeta y rubio grisáceo), tres tipos de vainas (recta. ligeramente curvada y curvada) el número de lóculos por vaina estuvo entre los 4 y 8 y la longitud de vaina entre 7 y 14 cm. En carácteres de semilla se observó una amplia variación algunos con presencia de moteado (blanco, café claro, rojo grisáceo, gris, púrpura intenso y negro) se presentaron 4 forma de semilla (ovoidal, casi cuadrada, arriñonada recta y arriñonada curva). Los hábitos de crecimiento fueron en su totalidad indeterminados (IIa, IIb y IIIb) en su mayoría IIb. El número de nudos en el tallo a la primera rama estuvo entre los 2.5 y 5 nudos. En evaluación preliminar se observó diferencias en el número de días a inicio de la floración 28 a 43 dds, el fin de la floración varío entre los 43 y 68 dds, la madurez fisiológica entre los 53 y 78 dds, la duración de la floración entre los 8 y 28 dds, la duración de ciclo reproductivo entre los 16 y 36 y la cosecha entre los 62 y 78 dds. En cuanto a los componentes del rendimiento el número de vainas por planta osciló entre los 2.5 y 17, el número de semillas por vainas entre los 2.5 y 8.5 y el peso de 100 semillas entre los 10 y 31g. Respecto al rendimiento tenemos que 132 accesiones superaron al testigo DOR-364 y 82 al testigo compañía-93 en más del 100 % y solamente 44 acceciones fueron superadas por los testigos. La mayoría de los materiales presentaron síntomas leves a la Mustia Hilachosa y 24 materiales presentaron daños severos a Mancha Angular. Se presenta un catálogo descriptivo de los 261 material estudiados dentro del cual tenemos codificación de colores, diccionario de códigos, carácteres cualitativos, caracteres cuantitativos, datos de pasaporte, datos de enfermedad y datos de rendimiento.

L INTRODUCCIÓN

En Nicaragua el cultivo del frijol común (*Phaseolus vulgaris* L.) ocupa el segundo lugar en importancia después del Maíz. Constituye parte importante en la alimentación humana por su alto contenido de proteína (22.3 %), es considerado una excelente fuente de hierro (7.9%) y de vitamina B 2.2 % (MAG, 1991).

A nivel nacional el cultivo del frijol está ampliamente distribuido en zonas productivas, se localiza en las regiones I, IV, V y VI (Tapia, 1987), el 95 % es producido por pequeños y medianos productores, el consumo percápita es de 14 kg al año y un rendimiento promedio de 648 kg/ha (MAG, 1995).

El frijol común es uno de los cultivos más antiguos, su origen Americano ha sido aceptado a finales del siglo XIX. Este punto de vista ha sido reforzado con evidencias basadas en datos arqueológicos, botánicos, históricos y lingüísticos (Gepts y Debouck, 1991). La información disponible indican dos grandes centros de domesticación y están en México y los Andes (Gepts & Debouck, 1991). Se establece la existencia de dos grupos principales de germoplasma los de Mesoamérica con tres razas y de los Andes con otras tres razas (Singh et al, 1991).

En Nicaragua existe diversidad genética en el cultivo del frijol observándose en variedad de colores y forma de grano y vainas, hábitos de crecimiento y otros caracteres.

Los trabajos de caracterización y evaluación preliminar consisten en una descripción básica de caracteres, aspectos fenológicos y agronómicos de utilidad para describir las poblaciones y para los usuarios del cultivo.

El Programa Recursos Genéticos Nicaragüense (REGEN), cuenta con una colección de germoplasma de frijol común que incluye variedades locales recolectadas en Matagalpa, Jinotega, Rivas, y otras regiones, las cuales han estado siendo evaluadas parcialmente, mostrando estos materiales un comportamiento de calidad sanitaria, rendimiento y características agronómicas sobresalientes, muchos de estos materiales criollos se consideran promisorios para su utilización en la mejora del cultivo.

Con el objetivo de completar información sobre el comportamiento del germoplasma criollo se realizó éste trabajo sobre caracterización y evaluación preliminar de frijol común para un adecuado conocimiento entre diferentes caracteres y contar con materiales genéticos que permitan desarrollar programas de mejoramiento, conservar el germoplasma para evitar las pérdidas de variabilidad genética de los materiales criollos existentes.

En base a lo antes mencionado se proponen los siguientes objetivos:

- Caracterizar y evaluar preliminarmente el germoplasma de frijol recolectado en Nicaragua.
- 2.- Detectar materiales promisorios que puedan ser útiles como material básico en Programas de mejoramiento genético.

II. Materiales y Métodos

2.1. Ubicación del experimento

El experimento se estableció en la época de primera (segunda semana de junio), en la estación experimental " La Compañía "situada en el departamento de Carazo, ubicada en los 11° 54' latitud norte y 86° 09' longitud oeste y con una altitud de 450 msnm. Con una temperatura media anual de 24 °C, precipitación anual 1735 mm y humedad relativa de 84 % (INETER, 1995).

En la Figura 1 y 2 se indican las condiciones climáticas durante el desarrollo del experimento.

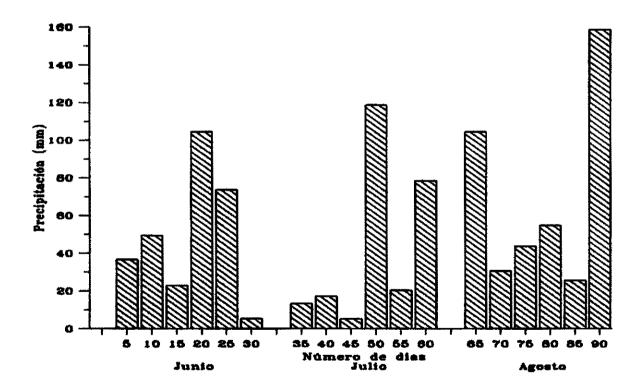


Fig. 1. Precipitación en pentada registrada en la Estación Experimental "La Compañía" durante la época de primera, de 1995.

Los suelos son jóvenes de origen volcánicos y clasificados dentro de la serie Masatepe (Ms), presentan textura franco arenosa, moderadamente profundos, pendiente ligera y bien drenados con un pH de 6.5.

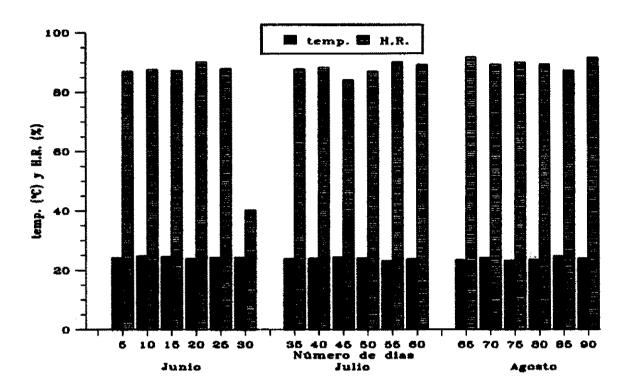


Fig. 2. Temperaturas promedios (°C) y humedad relativa (%) en pentadas de la Estación Experimental "La Compañía" durante la época de primera, de 1995.

2.2. Diseño Experimental

El material en estudio se estableció en un diseño típico de ensayos preliminares consistente en un surco por accesión de 4 metros de longitud dos testigos DOR-364 y Compañía-93 se intercalaron a un intervalo de 10 accesiones.

Generalmente estos ensayos incluyen una gran cantidad de materiales en una sola localidad representativa, son ensayos sin repeticiones, en los cuales se usan testigos (variedades comerciales locales), en este tipo de ensayo los materiales se evalúan por comparación con el testigo mas cercano o con el promedio de dos testigos (Rodríguez et al, 1981).

2.3. Labores del manejo del cultivo

2.3.1. Preparación del suelo

La preparación del suelo para el cultivo se realizó de manera convencional: chapoda, un pase de arado a 25 cm de profundidad, dos pases de grada, el surcado se hizo el mismo día de la siembra.

2.3.2. Siembra

La siembra se realizó manual en época de primera el 9 de Junio de 1995 a una profundidad de 3 cm en surcos con una longitud de 4m a una distancia de 50 cm entre surco y 10 cm entre planta, se usó una semilla por golpe.

2.3.3. Control de malezas

El control de malezas para el cultivo, se realizó en dos momentos, el primero a los 13 días después de la siembra (dds) de forma manual y el segundo a los 26 dds con azadón.

2.3.4. Control de plagas.

El control de plagas se realizó en dos momentos, a los 20 dds para controlar Crisomélido (*Diabrotica spp*) durante la floración y el segundo a los 40 dds para controlar falso medidor, (*Trichoplusia ni*). Se aplicó filotox (Metamidofos) a razón de un litro/ha.

2.4. Material Biológico

El material biológico lo constituyen 261 accesiones de frijol común recolectadas por el Programa de Recursos Genéticos Nicaragüense (REGEN) en distintas localidades del país (anexo 6). Se utilizaron como testigos las variedades Compañía-93 y DOR-364.

2.5. Descriptores a evaluar

Las variables a medir son descriptores para frijol común propuesta por Hidalgo (1991).

2.5.1 Floración

- Inicio de floración: Se registró cuando en el 50 % de plantas apareció la primera flor abierta.
- Color 1 alas: Se observó el color predominante de las alas comparándose con cuadros de colores.
- 3. Color 2 alas: Se observó la presencia de colores secundarios se comparó con cuadros de colores; se codificó " 0 " en ausencia de color secundario.
- 4. Patrón del color 2 alas: Se observó la distribución del color secundario de las alas, lo que se presentó como trazas y manchas.

- 5. Color de las venas en las alas: Se observó el color de las venas en las alas y se comparó con cuadros de colores.
- 6. Color 1 estandarte: Se observó el color predominante del estandarte y se comparó con cuadros de colores.
- 7. Color 2 estandarte: Se observó la presencia de colores secundarios en el estandarte, se comparó con cuadros de colores; se codificó " 0 " en ausencia del color secundario.
- 8. Patrón del color 2 estandarte: Se observó la distribución del color secundario del estandarte, el cual se presentó como: bordes y manchas.
- 9. Color del tubo del cuello del estandarte: Se observó el color del tubo del cuello del estandarte y se comparó con cuadros de colores.

2.5.2 Madurez Fisiológica

- 10.- Final de la floración: Se registró cuando el 50 por ciento de las plantas no tenían flores.
- 11.- Duración de la floración: Número de días transcurridos desde el inicio de floración al final de floración.
- 12.- Nudos en el tallo a la primera rama: Se contó el número de nudos en el tallo desde el nudo cotiledonal a la primera rama.
- 13.- Color de la vaina: Se observó el color de la vaina y se comparó con tablas de colores.

- 14.- Patrón del color de la vaina: Se observó la uniformidad del color de la vaina, uniforme y no uniforme.
- 15.- Lóculos por vaina: Se contó el número de lóculos en la vaina.
- 16.- Longitud de la vaina: La longitud de vaina se midió desde la inserción en el pedicelo hasta su ápice en centimetros (cm).
- 17.- Días a madurez fisiológica: Número de días transcurridos desde la siembra hasta el momento en que habían madurado la primera vaina en el 50 % de las plantas.
- 18.- Hábito de crecimiento: Se determinó de acuerdo a los propuestos por el CIAT (1987)

Tipo I: Hábito determinado:

I a: tallos y ramas fuertes

I b: tallos y ramas débiles.

Tipo II: Hábito indeterminado arbustivo con tallos y ramas erectos:

Ila: sin guías

IIb: con guías y habilidad para trepar

Tipo III: Hábito arbustivo indeterminado con

tallos y ramas débiles y rastreros:

IIIa: guías cortas sin habilidad para trepar

IIIb: guías largas con capacidad para trepar

Tipo IV: Hábito de crecimiento voluble con

tallos y ramas débiles, largos y torcidos.

IVa: vainas distribuidas por toda la planta

IVb: vainas concentradas en la parte superior

de la planta.

19.- Duración del ciclo reproductivo: Número de días transcurridos desde el inicio de la floración hasta la madurez fisiológica.

2.5.3 Cosecha:

- 20.- Días a cosecha: Número de días transcurridos desde el momento de la siembra hasta que el 95 % de vainas habían cambiado de color y se notaban secas.
- 21.- Semillas por vaina: Se contó el número de semillas encontradas en la vaina.
- 22.- Vainas por planta: Se contó el número de vainas encontradas en la planta.
- 23.- Forma del pico de la vaina: Se observó las formas que presentó el pico de la vaina, observandoce: marginal y no marginal.
- 24.- Tipo de vaina: Se observó diferentes tipos de vaina: recta, ligeramente curvada y curvada.

2.5.4 Semilla:

- 25.- Color primario de la semilla: Se observó el color predominante de la semilla y se comparó con cuadros de colores.
- 26.- Color del jaspe o moteado en la semilla: Se registró el color que presentó el color del jaspe o moteado de colores en caso de ausencia se codificó "0"
- 27.- Peso de 100 semillas: Se pesó 100 semillas, ajustado al 14 % de humedad.

- 28.- Forma de la semilla: Se observaron los diferentes tipos de forma de semilla.
- 29.- Brillo de la semilla: Se observó el brillo predominante de la semilla.
- 30.- Plagas y enfermedades: Para registrar plagas y enfermedades se utilizó la escala propuesta por el CIAT (1987). Sistema estándar para la evaluación de Germoplasma del frijol, las cuales son:
- 1- Sin síntomas visibles de la enfermedad
- 3- Presencia de unas pocas lesiones, que cubren aproximadamente un 2 % del área foliar
- 5- Presencia de varias lesiones que cubren un 5 % del área foliar o del área de las vainas.
- 7- Lesiones abundantes que cubren un 10 % del área foliar o del área de las vainas
- 9- Un 25 % del área foliar o del área de las vainas está cubierta de lesiones.

31.-Rendimiento Relativo

Se establecieron 10 accesiones seguidas por dos testigos DOR-364 y Compañía-93, para observar el comportamiento de las accesiones con los testigos. En la obtención de este parámetro se dividió el rendimiento de cada accesión entre el rendimiento promedio del testigo adyacente a los surcos evaluados, multiplicado por 100. El peso de la muestra de cada accesión se ajustó al 14% de humedad, según la formula:

$$R = P * (100-H) / 86 \text{ (Avelares, 1992)}$$

2.6. Metodología de medición y registro

Para describir una accesión es necesario definir las datos a tomar, es decir la guía o catálogo de descriptores. El número de datos que se pueda tomar durante la caracterización y la evaluación es infinita, por lo tanto en la práctica la toma de datos se limita a características de importancia para el mejoramiento y de utilidad para conocer la estructura poblacional de la especie (Querol, 1988; citado por Montalván, 1993).

2.6.1 Escalas y códigos utilizados

Los códigos se ajustaron según el tipo de carácter cualitativo o cuantitativo, en algunos caracteres cuantitativos se usaron unidades de medidas como centímetro (cm) y gramos (g).

2.6.2. Tamaño de la muestra

Se tomaron 5 muestras de 5 plantas elegidas al azar en cada surco.

2.7 Metodología de análisis:

2.7.1 Análisis para la caracterización

La información registrada fue analizada en base a los promedios y desviacion estándar para caracteres cuantitativos y la moda estadística en caso de caracteres cualitativos, para este último caso la moda es considerada la variante predominante de un descriptor.

2.7.2 Análisis de variación

El análisis de variación se basó en las distribuciones de frecuencia de los caracteres cualitativos y cuantitativos, haciendo referencia a las mediciones extremas y más frecuentes, además se utilizó las correlaciones Pearson entre los caracteres cuantitativos.

2.7.3 Análisis de los descriptores de enfermedad

Se hizo una descripción visual de acuerdo al daño que se presentó en cada surco, para esto se utilizó la escala de valores propuesta por el CIAT (1997),

III. RESULTADOS Y DISCUSION.

3.1. Caracterización:

3.1.1. Características de la flor

Es una flor típica completa, perfecta y papilonácea, con un pétalo simple dominante llamado estandarte y dos pétalos aislados dominados alas, los pétalos más pequeños opuestos al estandarte están soldadas para formar la quilla (Chapman & Carter, 1976).

- Color primario de las alas (C1ALA)

El color de las alas presentó 3 variantes blanco (1), púrpura (2) y lila (3), con mayor frecuencia se observó el color blanco (1). Coincidiendo con resultados reportados por Montalván, (1993); Arguello, (1992) y Marín, (1990) que caracterizaron variedades locales de Nicaragua.

En la figura 3 se muestra el comportamiento observado en las las 261 accesiones estudiadas en cuanto los diferentes colores de flor.

-Color secundario de las alas (C2ALA)

Este carácter en su mayoría fue ausente (0) y cuando se presentó mostró únicamente un color rosado (1), las accesiones que presentaron color secundario en las alas fueron muy pocas, coincidiendo con Arguello (1992) quien encontró este carácter ausente en la mayoría del material evaluado y con lo dicho por Debouck e Hidalgo (1985), en cuanto al color (Ver figura 3).

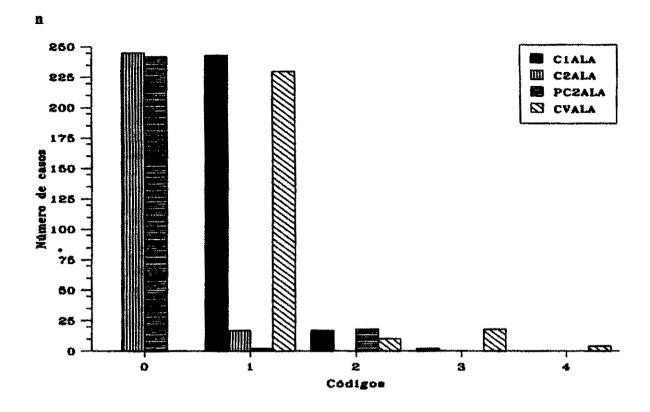


Fig. 3. Variación en el color primario (C1ALA), color secundario (C2ALA), patrón del color secundario (PC2ALA) y color de las venas en las alas (CVALA) de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

-Patrón del color secundario de las alas (PC2ALA)

Este carácter presentó 3 variantes: ausente (0), manchas (1) y Trazas (2), en mayor frecuencia fue ausente (0), fue muy poco el material que se observó con PC2ALA, en caso de presencia fue en forma de trazas, coincidiendo estos resultados con los obtenidos por Arguello (1992) y Montalván (1993), quienes encontraron distribuido el color secundario de las alas en forma de trazas (Ver figura 3).

-Color de las venas en las alas (CVALA)

El color de las venas en las alas mostró colores: blanco (1), rosado (2), púrpura (3) y lila (4), observándose con mayor frecuencia venas con color blanco (1), Ver figura 3.

Color primario-del estandarte (CPEST)

El color primario del estandarte presentó 4 variantes: blanco (1), rosado (2), púrpura (3) y lila (4); con mayor frecuencia se observó el estandarte de color blanco (1). Colores semejantes a los reportados anteriormente por Debouck & Hidalgo, (1985), Montalvan, (1993) y Arguello, (1992).

Observese en la figura 4 los diferentes colores primarios encontrados en el estandarte.

-Color secundario del estandarte (C2EST)

En el color secundario del estandarte se encontró 4 variantes: ausente (0), blanco (1), rosado (2) y lila (3); en mayor proporción se observó el color rosado (2). No coincidiendo estos resultados con los encontrados por Arguello (1992) y Montalvan (1993) quienes mostraron para este carácter color gris claro y rojo respectivamente.

En la figura 4 se presentan los diferentes colores secundarios encontrados en el estandarte.

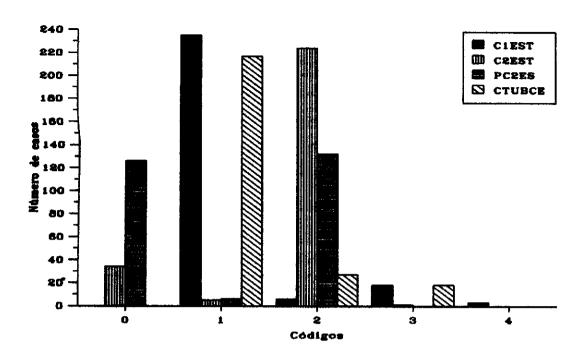


Fig. 4. Variación en el color primario (C1EST), color secundario (C2EST), patrón del color secundario (C2EST) y color del tubo del cuello del estandarte (CTUBCE) de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía", 1995.

-Patrón del color secundario del estandarte (PC2EST)

Para este carácter encontramos 3 variantes: ausente (0), bordes (1) y manchas (2); con mayor frecuencia se observó manchas (2) (Ver fig. 4); No coincidiendo estos resultados con Arguello, (1992); Montalvan, (1993) y Marín, (1990) quienes encontraron el color secundario del estandarte distribuido en forma de trazas o bordes.

-Color del tubo del cuello del estandarte (CTUCEST).

El tubo del cuello del estandarte presentó 3 variantes: verde pálido (1), lila grisáceo (2) y violeta grisáceo (3); observándose con mayor frecuencia verde pálido, (Ver gráfico 4).

Para los caracteres de la flor en cuanto a los colores de alas y estandarte se observó variación concordando con lo reportado por Singh et al., (1991) al evaluar razas de frijol de América y Debouck & Hidalgo (1985) que mencionan colores de alas y estandarte para frijol común. En la mayoría de los casos los caracteres de la flor observados son similares a los encontrados por otros autores que han trabajado con variedades locales de Nicaragua, sin embargo existen algunas discrepancias que pueden ser resultado de criterios particulares utilizados en cada caso.

El color de la flor, hipócotilo, tallo y semilla han sido estudiado por muchos investigadores. Algunos de los genes que controlan esos caracteres tienen un efecto pleiotrópico o están fuertemente ligados. Acción génica de dominancia, recesividad, epistaxis, genes modificadores en la determinación del color de la flor han sido reportado por diferentes autores (Singh, 1991). Basado en estas aseveraciones se puede inferir que es dificil separar el color de la flor de otros caracteres de la planta.

3.1.2. Características de la vaina

Se registraron seis caracteres de la vaina relacionados con el color, tipo, posición del ápice, longitud y número de lóculos.

-Color de la vaina (CVaina)

Se considera una de las características más simple en lo que respecta a la forma de tomar los datos, por que pueden distinguirse a simple vista los diversos colores que presentan las vainas; el color de esta es una característica varietal que tiene poca influencia por el ambiente (CIAT, 1983).

Se observó variación en el color de vaina: amarillo pastel (1), crema (2), anaranjado bajo (3), café violeta (4), rojo (5), rosado grisáceo (6), violeta cafesusco (7) y rubio grisáceo (8); los colores que se presentaron con mayor frecuencia fueron el amarillo y el rojo (Ver fig. 5). Semejantes a los reportados por Marín, (1990) y Cortes, (1995) Considerándose los colores de vaina más comunes en los materiales criollos de las localidades de Nicaragua.

Patrón del color de la vaina (PCVaina)

El patrón del color de la vaina fue no uniforme (3) y uniforme (5), observándose en la mayoría de casos el no uniforme (3). (ver figura 5). Coincidiendo estos resultados con los obtenidos por Marín (1990) quien además dice que el patrón del color de la vaina es la uniformidad con que se presenta el color secundario.

-Posición del pico de la vaina (PPVaina).

La curvatura del pico de la vaina observada fue marginal (1) y no marginal (2), se manifestó con mayor frecuencia marginal (1). (Ver figura 5).

_ Tipo de vaina (TVaina).

En las accesiones estudiadas se presentaron 3 tipos de vainas: recta (3), ligeramente curvada (5), y curvada (7); el tipo de vaina más observada fue ligeramente curvada (5), lo cual coincide con Marín, (1990) exceptuando en el tipo recurvada, (Ver figura 5).

Lóculos por vaina (Locvaina)

El número de lóculos por vaina varía entre 4-8, siendo más frecuente encontrar vainas con 6 y 7 lóculos. El número de lóculos se correlacionó positiva y significativa con la longitud de vaina (ver figura 5).

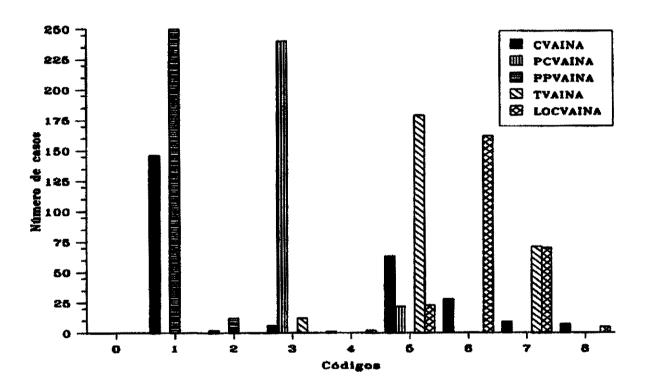


Fig. 5. Variación en el color de la vaina (CVAINA), patrón del color de la vaina (PVAINA), posición del pico de la vaina (PPVAINA), tipo de vaina (TVAINA) y lóculos por vaina (LOCVAINA) de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

Longitud de vaina (Logvaina)

El carácter longitud de vaina mostró variación desde 7 a 14 cm de longitud, con mayor frecuencia se presentaron vainas con 10 y 11 cm de longitud (ver figura 6).

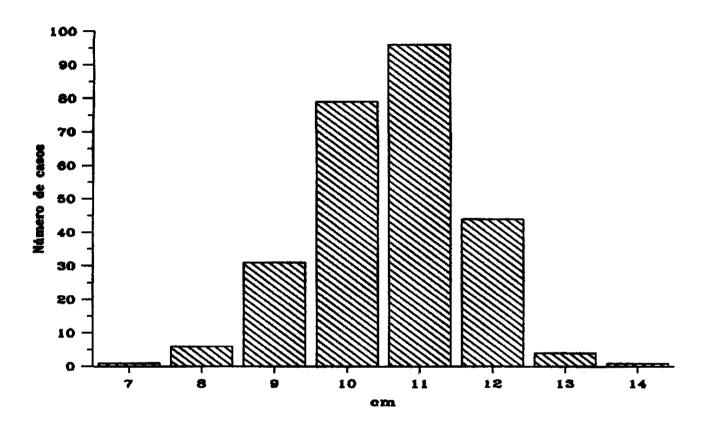


Fig. 6. Variación en la longitud de la vaina de 261 accesiones de frijol común (Phaseolus vulgaris L.) en la Estación Experimental "La Compañía".

Las accesiones en el estudio mostraron variación en cuanto a los caracteres de vaina. El tipo de acción génica que determinan algunas caracteristicas ha sido estudiado. Se reportan la acción de un solo gen (Ram y Prasad, 1985), de cuatro genes con un gran efecto aditivo y heredabilidad en sentido estrecho de 0.55 (Bassett y Woods, 1978), efecto heterótico positivo y negativo (Mitranov, 1983) para la longitud la vaina (todos los autores citados por Singh, 1991).

El número de lóculos por vaina en una planta es una característica genética propia de cada variedad que se altera poco con las condiciones ambientales, dicho componente es heredable (Valverde, 1986).

La longitud de la vaina se correlacionó positiva y significativa con la duración del ciclo reproductivo y peso de 100 semillas, mostrando que variedades con ciclo reproductivo prolongado tienden a mostrar vainas con mayor longitud. Por otro lado el hecho de que variedades con vainas largas tiendan a producir semillas mas pesada puede ser significativo en la mejora del cultivo dado que el peso de la semilla es un componente importante del rendimiento.

3.1.3. Características de semilla

Las variedades se identifican por las características de semilla, dichas características las constituyen la forma, el tamaño, el color y la brillantez de la testa (Escalante et al., 1993)

Color primario de la semilla (C1SEM)

La variación de colores en la semilla de frijol es muy frecuente, observándose el color primario: blanco (1), café claro (2), rojo claro (3), rojo oscuro (4), gris (5), púrpura intenso (6) y negro (7); se presentó con mayor frecuencia el color rojo claro (3), (ver fig. 7), coincidiendo con Tapia y Camacho (1988), quienes mencionan que el 55 % de variedades criollas tienen testa roja.

La variación del color de la semilla es producto de la gran diversidad genética que existe dentro de estas especies (Debouck & Hidalho, 1985).

La semilla tiene una amplia variación de colores, la mayor frecuencia en colores rojos de las accesiones en estudio puede estar asociado a que son los de mayor demanda en el país y por lo tanto los más frecuentes en áreas de producción. Los frijoles con otros colores actualmente se consideran un rubro no tradicional (Cisneros, 1994) y pueden ser cultivados para autoconsumo.

- Color del jaspe o mateado (CJOM)

Se presentaron 5 variantes en jaspe o moteado: ausente (0), café claro (1), anaranjado cafesusco (2), café oscuro (3), negro (4) y rojo claro (5); cuando la semilla presenta jaspe o mote es más frecuente el color café oscuro (3), sin embargo la presencia de jaspe o moteado es rara en variedades locales de Nicaragua probablemente debido a que en el mercado éste tipo de grano es de muy poca demanda. Según el CIAT, (1985) los más comunes son las manchas negras lo que concuerda con lo encontrado en colección estudiada (ver fig 7).

- Forma de la semilla (FSEM)

En este trabajo se encontraron semillas de 4 formas: ovoidal (2), casi cuadrada (4), arriñonada recta al lado del hilo (8), y arriñonada curva al lado del hilo (9) (ver figura 7); con mayor frecuencia se presentaron casi cuadrada y ovoidal. Estos resultados son semejantes a los reportados por Tapia y Camacho (1988) y Marín (1990).

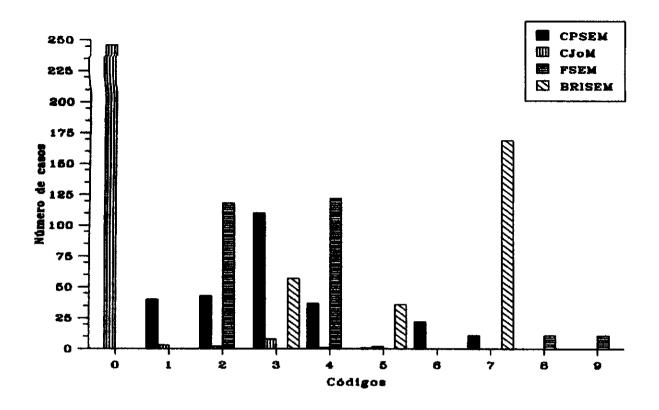


Fig. 7. Variación en el color primario de la semilla (CPSEM), color del jaspe o Moteado (CJoM), forma de la semilla (FSEM) y brillo de la semilla (BRISEM) de 261 accesiones de frijol común (Phaseolus vulgaris L.) en la Estación Experimental "La Compañía".

Brillo de la semilla (BRISEM)

Este carácter presentó 3 variantes: Opaca (3), intermedia (5) y brillante (7); observándose con mayor frecuencia brillante (7) (Ver fig. 7). Siendo más frecuente encontrar entre el germoplasma estudiado semillas de testa brillante.

El brillo de la semilla es determinado por un gen en presencia del alelo dominante y con dos alelos recesivos la testa opaca (Davis, 1985). Este carácter es importante en las variedades de frijol debido a que determinan parcialmente su valor en el mercado en muchas partes de América Latina (Davis, 1985).

El germoplasma estudiado mostró variación en cuanto a los caracteres de semilla. Frecuentemente se observó variedades con grano que se ajusta a la demanda de productores y consumidores lo que es de gran valor para la mejora genética del cultivo.

3.1.4. Hábito de Crecimiento (HC)

El hábito de crecimiento es de importancia en la descripción de variedades (Voysest y Dessert, 1991). Hidalgo et al., (1980) define el hábito de crecimiento como el resultado de la interacción de algunas características que determinan finalmente la arquitectura de la planta. Singh (1982) menciona que cuatro caracteres han sido usados como criterios para clasificar el hábito de crecimiento, tales son: la naturaleza del desarrollo del botón terminal (vegetativo versus reproductivo), fortaleza del tallo (débil versus fuerte), longitud de la guía y habilidad trepadora (ninguna, débil o fuerte), y patrón de fructificación (basal, uniforme o terminal).

Los materiales evaluados presentaron hábito de crecimiento del tipo indeterminado IIa, IIb y IIIb de éstos el que se presentó con mayor frecuencia fue el tipo IIb con 220 accesiones y en menor frecuencia se presentaron el IIa con 38 accesiones y el IIIb con 3 accesiones.

Estos resultados presentan relación con los obtenidos por Martínez, (1994); Cerrato, (1991) y Marín, (1990) quienes encontraron plantas con habito de crecimiento indeterminado.

El tipo hábito de crecimiento es una característica bastante plástica, teniendo una alta heredabilidad, puede seleccionarse fácilmente desde las generaciones tempranas. Tapia y Camacho, (1988) mencionan que las altas temperaturas en combinación con la altitud modifican el tipo de crecimiento de la planta del frijol.

En la figura 8 se reflejan los diferentes tipos de hábitos de crecimiento encontrados en el experimento.

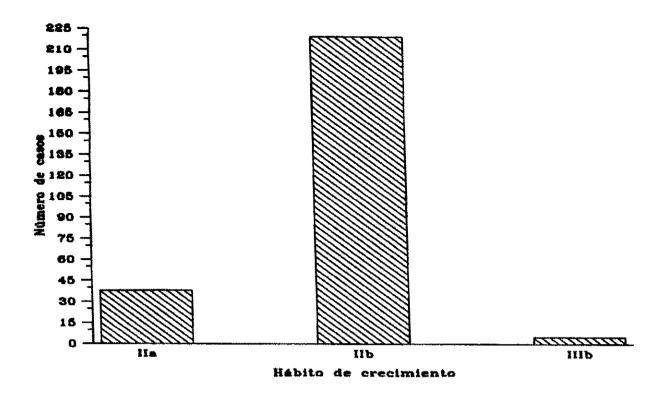


Fig. 8. Tipos de hábito de crecimiento de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

3.1.5 Número de nudos en el tallo a la primera rama (NNudos)

El número de nudos en el tallo a la primera rama presentó un rango de 3 - 5 nudos; encontrándose en la mayoría de casos plantas con 3 nudos a la primera rama (Ver fig 9).

Según Somarriba (1997), el primer nudo corresponde al de los cotiledones, el segundo al de las hojas primarias y el tercero a la primera hoja trifoliada.

En el material criollo caracterizado se observó que el número de nudos a la primera rama es un carácter de muy poca variación, esto puede estar relacionado a la variabilidad genética y muy poco influenciado por el medio ambiente.

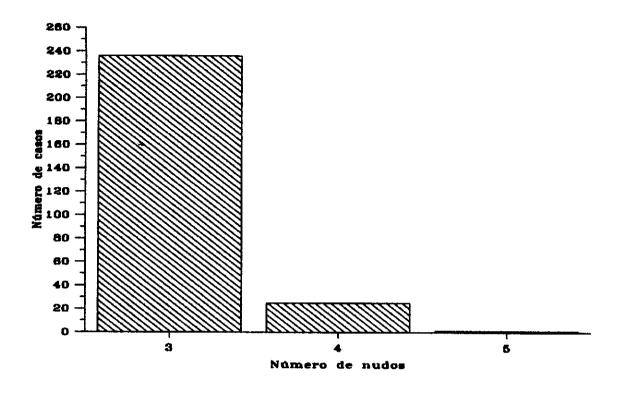


Fig. 9. Número de nudos en el tallo a la primra rama de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

3.2. Evaluación Preliminar

_ Inicio de la Floración (INFLOR)

Se considera inicio de floración cuando en una planta ocurre la antesis de la primera flor o cuando en el 50 % de las plantas tienen cuando menos la primera flor abierta (Escalente & Kohasha,1993).

Los días a inicio de floración se presentaron en un rango entre 28 y 43 días, pero la mayor parte iniciaron su floración entre los 33 y 38 dds; (Ver figura 10), estos resultados son similares a los encontrados por Rodríguez et al., (1997) al evaluar estos mismos materiales.

_ Fin de floración (FINFLOR)

Se considera final de la floración cuando en una planta ocurre la antesis de la última flor o cuando el 50 % de las plantas tienen la ultima flor (Escalante y Kohashi, 1993).

El final de la floración presenta un rango de variación entre los 43 y 68 dds; pero la mayoría del material evaluado terminó de florecer a los 53 días (ver figura 10).

Este carácter se correlacionó positiva y significativa con las variables de fonología (ver anexo 8), demostrándose que todas las etapas del ciclo del frijol son dependientes Tapia, (1987a) expresa una opinión contraria a esto al considerar que la diferencia de tiempo en la floración de ninguna manera tiene que ver con los demás etapas.

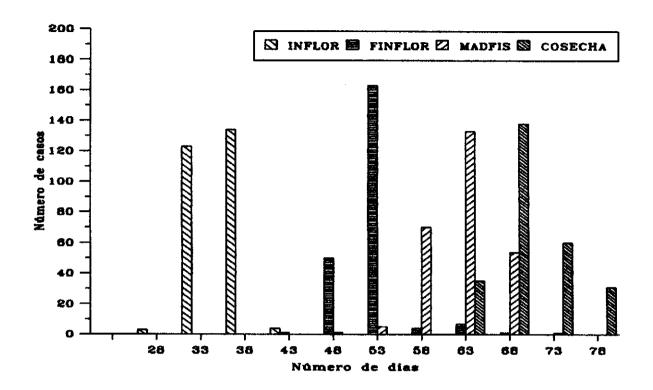


Fig. 10. Días a inicio de floración (INFLOR), fin de floración (FINFLOR), madurez fisiológica (MADFIS) y cosecha de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

Madurez Fisiológica (MF)

Se calcula como días después de la siembra que coincidan con el inicio de la etapa de desarrollo R9 (CIAT, 1987), aquí las plantas iniciaron su cambio de color (follaje) y secado de vainas, (CIAT, 1985).

El material criollo evaluado mostró una amplia variabilidad en lo que respecta al número de días a la madurez fisiológica, el cual varía en un rango de 53 a 73 dds, (ver fig. 10), pero con mayor frecuencia los materiales maduraron a los 63 días. Los días a madurez fisiológica se encuentran relacionados con los días a la floración, por lo que su coeficiente

de correlación se observó altamente significativo. El ciclo biológico del frijol cambia según el genotipo y el medio ambiente, plantas de un mismo genotipo sembradas en condiciones climáticas diferentes no pueden estar en el mismo estado de desarrollo; al mismo tiempo (Fernández et al., 1985). Voysest, (1985) menciona que la diferencia no solo es varietal, si no que existen influencias de muchos factores entre los más importantes se encuentran la duración del día y la temperatura.

Los resultados obtenidos coinciden con los reportados por Tapia & Camacho, (1988) quienes dicen que las variedades criollas alcanzan su madurez entre los 56 y 79 dds, además coinciden con los resultados obtenidos por Arguello, (1992), Montalvan, (1993) y Martínez, (1994) quienes evaluaron frijol común y encontraron datos similares a estos.

Del material evaluado, 20 accesiones resultaron ser precoces, alcanzando su madurez fisiológica entre los 52 y 54 dds y 28 materiales se consideran tardíos, quienes maduraron entre los 67 y 69 dds (anexo Nº 3).

_Duración de la floración (DURFLOR) y del ciclo reproductivo (DURCICLO)

La duración de la floración se define como lapso de tiempo entre el inicio y el final de la floración, (Escalante & Kohashi, 1993).

La duración de la floración osciló entre los 8 y 28 días, observándose que en la mayoría de casos la floración duró de 16 a 18 días (Ver figura 11).

La variable duración de la floración se correlacionó positiva y significativa con duración del ciclo reproductivo, lo que indica que si una variedad es de ciclo corto floreará temprano, lo contrario de una variedad tardía. Escalante & Kohashi, (1993) mencionan que la duración de la floración difiere con el hábito de crecimiento y la precocidad

El ciclo del cultivo del frijol se alarga en la medida que la temperatura se reduce a 14°C, se retarda el ciclo vegetativo 5 días por cada grado que disminuye la temperatura (Icaza, 1981) citado por Tapia y Camacho, (1988).

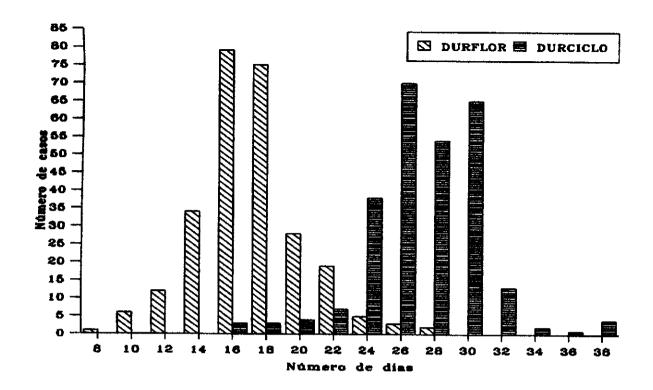


Fig. 11. Número de días en la duración de la floración (DURFLOR) y del ciclo reproductivo (DURCICLO) de 261 accesiones de frijol común (Phaseolus vulgaris L.) en la Estación Experimental "La Compañía".

La duración del ciclo reproductivo osciló entre los 16 y 36 días, pero en la mayoría de casos el ciclo reproductivo duró 26 y 30 días (ver figura 11).

Cosecha

El rango de días a cosecha osciló entre los 63 y 78 dds (ver fig. 10), con mayor frecuencia se cosecharon las accesiones a los 68 días, coincidiendo estos resultados con Martínez, (1994), Dávila, (1979b) y Cerrato, (1992) quienes encontraron rangos de días a cosecha similares a estos al evaluar variedades criollas de frijol común en Nicaragua.

Es recomendable que la cosecha se efectúe antes del inicio de la dehiscencia natural, además es importante conocer el ciclo de la variedad, por que así conocemos el momento adecuado para cosechar, evitando pérdida del grano y contaminación del mismo al caer al suelo.

3.3. El rendimiento y sus componentes

El rendimiento es controlado por varios genes y es un carácter cuantitativo que se ve afectado por el medio ambiente (Davis, 1985). Tapia, (1989) menciona que el rendimiento determina la eficiencia con que las plantas hacen uso de los recursos existentes en el medio ambiente, además del potencial genético que estas presentan.

Número de vainas por planta

El número de vainas por plantas osciló entre 2.5 y 17.5, con mayor frecuencia las accesiones presentaron entre 6 y 10 vainas por planta (Ver figura 12). Arguello, (1992) y Montalvan, (1993) encontraron datos superiores a estos y González M. (1995) encontró datos similares.

El número de vainas por planta se correlacionó significativa y positiva con el número de nudos lo que indica que a mayor número de nudos en una planta, ésta tendrá mayor capacidad para desarrollar más ramas.

El comportamiento promedio de los testigos DOR-364 y Compañía 93 en este ensayo fue de 8.19 y 7.13 vainas por planta, siendo superados numéricamente por 76 y 119 accesiones respectivamente.

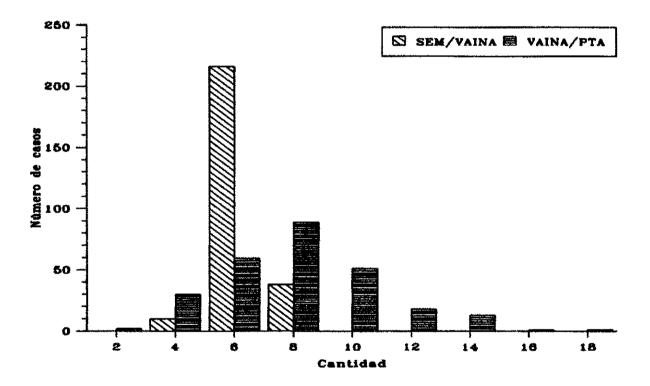


fig. 12. Número de semillas por vaina (SEM/VAINA) y vainas por planta (VAINA/PTA) de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

Número de semillas por vainas (SEMVAINA)

El número de semillas por vaina se refiere al número promedio de semillas que se desarrollan en la vaina y que han alcanzado un completo desarrollo (testa lisa, color y tamaño de la semilla) según la variedad. Este carácter, es uno de los factores determinantes en el rendimiento (White, 1985).

El número de semillas por vaina fluctuó entre 2.5 y 8.5, con mayor frecuencia se presentaron vainas con 6 semilla (ver figura 12). Comportamiento similar a los reportados por Avelares, (1992), Cortes, (1995), Hernández, (1995) y Rodríguez et al., (1997).

Los testigos DOR_ 364 y Compañía_93 presentaron promedios de 5.74 y 5.48 semillas por vaina, siendo superados los testigos numericamnete por 76 y 104 accesiones respectivamente.

- Peso de 100 semillas

Thomas (1983), reporta que el peso de la semilla es controlado por un gran número de genes, y que las causa de variación puede deberse a la diversa constitución genética de las accesiones y a la influencia de las condiciones ambientales.

El rango de variación encontrado en la variable peso de 100 semillas varía entre 8 y 29 gramos; con mayor frecuencia encontramos semillas con un peso de 17 y 20 gramos, (Ver figura 13). Datos similares a los reportados por Cortes, (1995) y Rodríguez *et al.*, (1997) al evaluar también materiales criollos.

El peso del grano es un componente del rendimiento y se correlacionó positiva y significativa con inicio de floración (Anexo 8).

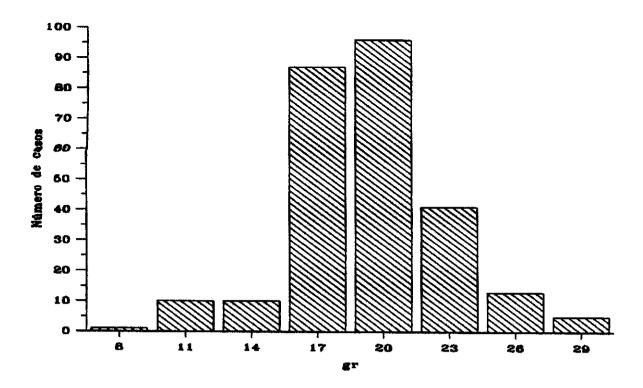


Fig. 13. Variación en el peso de cien semillas (gr) de 261 accesiones de frijol común (*Phaseolus vulgaris* L.) en la Estación Experimental "La Compañía".

El promedio general del testigos DOR-364 fue de 17.29 superado numéricamente por 84 materiales, diferente al testigo Compañía-93 que promedio 22.35 y fue superado por 18 accesiones (anexo Nº 7).

Rendimiento Relativo

Los materiales evaluados, demostraron adaptabilidad, a las condiciones ambientales donde se realizo el estudio. De las 261 accesiones criollas 137 superaron al testigo Dor-364 con un porcentaje que va de 0.62 hasta 303.9% para el testigo Compañía-93 donde 82 accesiones tuvieron rangos de 0.11 a 314.06, siendo superado ambos testigos solamente por 44 materiales (anexo Nº 7).

Esto demuestra lo dicho por Tapia y Camacho (1988), que muchas variedades sobresalen por su alta capacidad productiva, aun al compararse con variedades mejoradas.

3.4 - Evaluación Adicional

En el material estudiado se presentaron dos tipos de enfermedades, las cuales fueron evaluadas según el nivel de severidad para germoplama del frijol común propuestas por el CIAT, (1987). Dentro de las cuales tenemos ; Mustia Hilachosa (*Tenatenosphurus cucumeris* (Franf) Donk) esta ataca principalmente tallos, ramas y vainas , en cualquier estado de desarrollo del cultivo (CIAT, 1985). En Nicaragua se han evaluado pérdidas económicas de hasta un 70 % por Mustia Hilachosa. Del material evaluado 95 accesiones presentaron mayor daño (nivel de severidad 7 y 9) por ésta enfermedad, 64 materiales no presentaron ningún síntoma (nivel 1) y el resto del material presentó lesiones leves (nivel 3,5 y 7) (Tabla N°1).

Otra enfermedad observada fue la Mancha Angular (*Isariopsis griceola* Sacc) ésta causa lesiones angulares en el follaje, hasta llegar a las semillas reduciéndolas a la mitad de su tamaño normal (Tapia y Camacho, 1988). Campos (1987), menciona que ésta enfermedad ataca variedades criollas de frijol y provoca daños económicos de hasta un 80 %. La mayoría del material evaluado presentó síntomas de ésta enfermedad, por lo que se registró la información en dos momentos durante el experimento, sinembargo probablemente no ocasionó daños tan severos y afectó poco el rendimiento, a pesar que las temperaturas prevalecientes durante el desarrollo del experimento estuvieron en rango óptimo para el desarrollo de la enfermedad según reporta Ferraz (1980).

Tabla No. 1. Resultados obtenidos en los análisis de distribución de frecuencia para las enfermedades Mancha Angular y Mustia Hilachosa.

Nivel de severidad	Mustia Hilachosa (Tenatenosphurus cucumeris (Frank)Donk)	Mancha Angular "1" (Isariopsis griceola Sacc)	Mancha Angular "2" (Isariopsis griceola Sacc)
1	64	1	0
3	55	69	25
5	47	164	172
7	71	27	62
9	24	0	2

IV. CONCLUSIONES

- 1.- El germoplasma de frijol sometido a estudio mostró variabilidad genética para los caracteres cualitativos, exceptuando para la variable color secundario de las alas.
- 2.- Las accesiones estudiadas mostraron diferencias en cuanto al número de días para alcanzar la madurez fisiológica: 20 resultaron ser las más precoz madurando entre los 52 y 54 días; 28 materiales se consideran tardíos alcanzando la madurez entre los 67 y 69 días, con una diferencia de 15 días entre precoz y tardíos; mientras que 213 materiales mostraron maduración intermedia.
- 3.- Se observó diferencias en cuanto a reacción del germoplasma al ser infectado por las enfermedades; en cuanto a Mustia Hilachosa (*Tenatenosphurus cucumeris* (Franf) Donk)166 accesiones mostraron niveles de severidad de 1 a 5 y 95 accesiones resultaron ser susceptibles mostrando niveles altos de severidad (7 y 9).
- 4.- Para Mancha Angular (Isariopsis griceola Sacc)todo el gemoplasma fue infectado con diferentes niveles de severidad (3, 5 y 7) para algunas accesiones el nivel se incremento en el segundo registro de información.
- 5.- Las accesiones mostraron diferencias en cuanto a rendimiento relativo, donde 137 superaron al testigo Dor_364 y 82 al testigo Compañía_93.

V. RECOMENDACIONES

Someter a evaluación en otras localidades aquellos materiales que mostraron rendimientos relativamente superiores a los testigos, o que fueron menos susceptibles a las enfermedades Mancha Angular (*Isariopsis griceola* Sace) y Mustia Hilachosa (*Tenatenosphurus cucumeris* (Frank) Donk), así como también aquellos materiales que presentaron caracteres deseables para el mejoramiento genético.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Arguello, X. 1992. Caracterización y Evaluación Preliminar de 28 accesiones de frijol común (*Phaseolus vulgaris*4 L.). Trabajo de Tesis. Ing. Agr. Managua, Nicaragua. UNA, 51p.
- Avelares, S.J. 1992. Evaluación comparativa de 8 variedades de frijol común (Phaseolus vulgaris L.), recolectadas en Nicaragua. Revista informativa anual del Programa de Recursos Genéticos Nicaraguense. UNA, Managua.
- CIAT, 1983. Informe Anual. Programa del frijol. Calí, Colombia. Pp 9 18.
- CIAT, 1985. Frijol Investigación y Producción, copilado por Fernández. F., López, M., Schoonhuen, A. Calí, Colombia, XYZ.419p.
- CIAT, 1987. Sistema estándar para la evaluación de germoplama de frijol. Copilado por Schoonhuen, A., Marcial A. Pastor_Corrales (comps). Calí, Colombia. 56p.
- Chapman, S y Carter, L., 1976. Producción agrícola. Principios y prácticas. Zaragoza. España Pp 341 349.
- Cortes, F. 1995. Evaluación de 89 Líneas de frijol Común (*Phaseolus vulgaris* L.)

 Obtenidas a partir de ocho poblaciones recolectadas en Nicaragua. Trabajo de
 Tesis. Ing. Agr. Managua Nicaragua. Universidad Nacional Agraria. UNA. 43p.
- Cisneros, C.E. 1994. Producción y Mercadeo de frijol en Nicaragua Escuela de Economía Agrícola. Universidad Nacional Autónoma de Nicaragua. ESECA _ UNAN. 25P.
- Cerrato, J. E. 1992. Evaluación de 16 variedades criollas de frijol común (*Phaseolus vulgaris* L.) recolectadas en diversas zonas de Nicaragua. Tesis Ing. Agr. Universidad Nacional Agraria (UNA). Managua Nicaragua. 47p.
- Casanova, M. N. y Valdivia, L. P. 1994. Obtención de líneas Avanzadas a partir de

- cuatro variedades criollas de frijol común (*Phaseolus vulgaris* L.). Recolectadas en distintas localidades de Nicaragua. Tesis Ing. Agr. Universidad Nacional Agrícola (UNA). Managua, Nicaragua. 55p.
- Campos, A. J. 1987. Enfermedades del frijol. México. Trillas (reimp. 1991). 132p.
- Debouck, D., Hidalgo, R. 1985. Morfología de la planta de frijol común. Frijol Investigación y Producción, CIAT. Primera edición. Calí, Colombia Pp 7 41.
- Davis, J. 1985. Conceptos básicos de genética de frijol. Frijol Investigación y Producción. CIAT. Primera edición. Calí, Colombia Pp 81 107.
- Dávila, F. 1979. Evaluación de variedades promisorias de frijol común rojo (*Phaseolus vulgaris* L.) en la región interior del país. Informe anual. Managua, Nicaragua Pp 89 107.
- Escalante, E. J. y Kohashi, J. S. 1993. El Rendimiento y Crecimiento del frijol. Manual para toma de datos, Montecillo, EDo. México 84p.
- Fernández, F., Gepts, P. y López, M. 1985. Etapas de desarrollo en la planta de frijol. Frijol Investigación y Producción. CIAT, Primera edición, Calí, Colombia Pp 61 78.
- Ferraz S., 1980 Angular leaf Spod en Schwarts H.F and Galvez G.E., Ed. Bean production problems diasese insect, soil and climatic constraints of Phaseolus vulgaris CIAT Cali Colombia pagina 55-66.
- González, N. 1995. Evaluación sobre crecimiento, desarrollo y rendimiento de 14 accesiones criollas de frijol común (*Phaseolus vulgaris* L.) y el testigo comercial Revolución_84 en la estación experimental la Compañía, Carazo. Postrera 1993. Trabajo de Tesis Ing. Agr. Managua Nicaragua. Universidad Nacional Agraria (UNA) 63p.
- González, M. 1995. Evaluación del Crecimiento y Desarrollo de 14 accesiones

 Nicaragüenses y la variedad Rev. _84 de frijol común (*Phaseolus vulgaris*

- L.). Trabajo de Tesis Ing. Agr. Universidad Nacional Agraria (UNA) 43p.
- Hidalgo, R. 1991. CIAT'S World Phaseolus Collection. en A. Van Schoonhoven y O. Voysest. eds. Common beans. research for crop improvemen. CAB. Int., wallingford, uk and CIAT. Cali, Colombia Pp. 163 197.
- IICA, 1989. Compendio de Agronomía Tropical. Ministerio de Asuntos extranjeros de Francia. Instituto Internacional de Cooperación para la Agricultura. Tomo II. San José, Costa Rica Pp 108 - 120.
- IBPGR, 1982. Phaseolus vulgaris Descriptor primera edición Roma Italia. IBPGR. 32P.
- INETER, 1995. Servicio Hidrométrico Nacional. Datos Estadísticos de la Estación Meteorólogica "Campos Azules".
- Kohashí, S. J. 1990. Aspectos de la morfología y fisiología del frijol (*Phaseolus vulgaris* L.) y su relación con el rendimiento. Centro de Botánica CHapingo Montecillo. México. 44p.
- Kornerup. A. y Wanscher J. 1983. Methuen Handbook of colour. Tercera edición. Gran Norwich, Gran Bretaña, Fletcher y Son LID. 252p.
- Litzenberger, S. 1976. Guía para cultivos en los Trópicos y Sub trópicos. Agencia para el desarrollo internacional. Washington., D.C. Pp 68 72.
- Llano, A. y Herrera, M. 1983. Evaluación de 23 variedades de frijol común.
- Marín, V. 1990. Caracterización y Evaluación preliminar de 30 cultivares de frijol común (*Phaseolus vulgaris* L.). Trabajo de Diploma, Managua, Nicaragua, 56p.
- Martínez, F. 1994. Evaluación de 20 variedades criollas de frijol común (*Phaseolus vulgaris* L.) Recolectadas en Nicaragua. Tesis Ing. Agr. Universidad Nacional Agraria (UNA). Managua Nicaragua 47p.

- Montalvan, G. 1992. Caracterización y Evaluación Preliminar de 30 accesiones de frijol común (*Phaseolus vulgaris* L.) trabajo de Tesis. Ing. Agr. Managua, Nicaragua. Universidad Nacional Agraria (ANA) 101p.
- Mezquita, B. 1973. Influencia de algunos componentes morfológicos en el rendimiento de frijol (*Phaseolus vulgaris* L.). Tesis Msc. CHapingo, México. ENA. Colegio de Post Grado ——p.
- MAG, 1991. Guía técnica para el frijol común (CNIGB) Managua, Nicaragua. 59p.
- MAG, 1995. Análisis de Producción y Perspectivas, Boletín No. 17, primer semestre 1995 Pp 21 - 27.
- Rodríguez, F., P. Pérez y A. Fuhs. 1981. Genética y Mejoramiento de las plantas. Ed. Pueblo y Educación. Habana, Cuba 22p.
- Singh, S.P., Gepts, P. & Debouck, D. G. 1991. Races of Common Bean (*Phaseolus vulgaris* Fabaceae) Economic, Botany New York Pp 396.
- Tapia, B. H. y Camacho, H. A. 1988. Manejo Integrado de la Producción de Frijol Basado en Labranza Cero. Managua, Nicaragua 181p.
- Tapia, B. H. 1987a. Variedades Mejoradas de frijol común (*Phaseolus vulgaris* L.) con grano rojo para Nicaragua. primera edición. ISCA. Dirección de investigación y Post grado. Managua, Nicaragua 26p.
- Tapia, B. H. 1987b. Mejoramiento Varietal de Frijol en Nicaragua. ISCA. Managua, Nicaragua. 20p.
- Voysest, O. 1985. Mejoramiento del Frijol por Introducción y Selección. Frijol Investigación y Producción, CIAT, primera edición. Calí, Colombia Pp 89 - 107.
- Voysest O. & dessert M., 1991. Bean cultivar: Classes and comercial Seeol Types.

- Valdivia, R. 1993. Caracterización y Evaluación Preliminar de 19 accesiones de frijol Tepari (*Phaseolus acutifolius* Gray). Tesis Ing. Agr. Managua Nicaragua 88p.
- Valverde, I. 1986. Tolerancia a la competencia de malezas en seis cultivares de frijol (*Phaseolus vulgaris* L.) Turrialba 36 (1) Pp 59_61.
- White, J. 1985. Conceptos básicos de fisiología del frijol. Frijol Investigación y Producción. CIAT 1ra. Edic. Calí, Colombia Pp 43 60.

CATALOGO DESCRIPTIVO

Contenido		Pág.
1 - Anexo No. 1	Codificación de Colores	43
2 - Anexo No. 2	Diccionario de Códigos	45
3 - Anexo No. 3	Carácteres Cualitativos	49
4 - Anexo No. 4	Carácteres Cuántitativos	57
5 - Anexo No. 5	Datos de enfermedad	110
6 - Anexo No. 6	Datos de Pasaporte	113
7 - Anexo No. 7	Variables del Rendimiento	119
8 - Anexo No. 8	Tabla de Correlacines Person	125

ANEXO Nº1

CODIFICACION DE COLORES

CODIGO	CODIGO METHUM	NOMBRE DEL COLOR SEGUN METHUM	nombre del color segun regen
	Col	or Primario de las al	as
1	1A1	Blanco	Blanco
\bar{z}	15A7	Fürvura	Purpura
3	16E3	Lila	Lila
	Colo	r Secundario de las a	las
t >	_		Ausente
i	12A2	Rosado	Kosado
.k	± ₹°\$3₹	10 namo	d by a say the the far
	Color	de las Venas en las	aras
1	1A1	Blanco	Blanco
1 2	12A2	Rosado	Rosado
3	15A7	Purpura	Purpura
4	1680	Lila	Lila
	Color	r Primario del Estanda	arte
1	1A1	Blanco	Blanco
$\tilde{\mathbf{z}}$	12A2	Rosado	Rosado
ä	15A7	Púrpura	Pûrpura
4	16B3	Lila	Lila
	Color	Secundario del Estano	darte
			<i>k</i> - -
Q.		— na	Ausente
1	1A1	Blanco	Blanco
2	12A2	Kosado	Rosado
3	16B3	Lila	Lila
	Color del	Tubo del Cuello del E	standarte
1	30A4	Verde pastel	Verde pálido
$ar{ar{z}}$	1502		Lila grisáceo
1 2 3	17C3	Violeta grisac	
₩	□ . • • • • • • • • • • • • • • • • • • •		grisáceo

o bajo ado claro curo grisáceo aro curo
aro aro curo
aro ado co curo aro
93 293 993

ANEXO Nº 2

DICCIONARIO DE CODIGOS

Nombre del Descriptor	Clave	Código	Estado del Descriptor
Mûmero de accesion	Acc.	-	Númerico
bocalidad	Lugar de colect	. a	La Concepción San Marcos Cerro Mombacho Los Cerros Quebrada Honda Rancho Grande Pueblo Nuevo Pantasma Limon Sur Los Cerritos etc.
Municipio	Município	_	Altagracia Diriamba Diriombo Yali Tola Jalapa etc.
Departamento	Dpto.	_	Rivas Carazo Masaya Matagalpa Esteli Rio San Juan Jinotega Nueva Segovia Leon CHinandega Boaco Zelaya etc.
Latitud de colecta	lat. G	ados	Tomada en grados
Longitud de colecta	Long.	Grados	Tomada en grados

Nombre del Descriptor	Clave	<u>Código</u>	<u>Ketado del</u>
Altitud de colecta	Alt.	merim	Descriptor Tomada en metros sobre el nivel del mar
Longitud de la vaina	Long.vains	a cra	Medida en centimetros
Lóculos por vaina	Loc. vaina	j	Númerico
Hábito de crecimiento	H.C	IIa	Indeterminado arbustivo. con tallos y ramas erectas sin
		ПР	guia Indeterminado arbustivo con tallos y ramas con habilidad
		IIIb	para trepar Indeterminado arbustivo con tallos y ramas débiles con guías largas con capacidad para trepar
Número de nudos a a la primera rama	Número de nudos	-	Numérico
Inicio de Floración	INFLOR	-	Numérico
Fin de la Floración	FINFLOR	-	Numérico
Duración de la floración	DURFLOR	-	Numérico
Días a Maderez fisiológica	Mad.fisg.	-	Numérico
Días a Cosecha Duración del ciclo reproductivo	Cosecha DURCICLO	-	Numérico Numérico
Vainas por planta	Va/planta	-	Numérico

Semillas por vaina	sem/vaina	_	Numérico
Peso de 100 semillas	P100Sem	€	Numérico
Color primario de las alas	C1ALA	1 2 3	Blanco Pürpura Lila
Color secundario de alas	CZALA	() 1	Ausente Rosado
Fatrón del color secundario de las alas	PC2ALA	0 1 2	Ausente Manchas Trazas
Color de las venas en las alas	CVALA	1 2 3 4	Blanco Rosado Púrpura Lila
Color primario del estandarte	Clest	1 2 3 4	Ausente Rosado Pürpura Lila
Color secundario dei estandarte	CZEST	0 1 2 3	Ausente Blanco Rosado Lila
Patrón del color secundario del estandarte	PC2EST	0 1 2	Ausente Bordes Manchas
Color del tubo del cuello del estandarte	CTCEST	1 2 3	Verde pálido Lila grisáceo Violeta grisáceo
Color de la vaina Patrón del color de de la vaina	CVaina PCVaina	1 2 3 4 5 6 7 8 3 5	Amarillo bajo Crema Anaranjado claro Café oscuro Rojo Rosado grisáceo Café claro Rojo oscuro No uniforme Uniforme
Posición del pico de la vaina	PPVaina	1 2	Marginal No marginal

Nombre del Descriptor	Clave	<u>Código</u> <u>D</u>	<u>Estado del</u> escriptor
Tipo de vaina	TVaina	3	Recta
		5	Ligeramente
			curvada
		7	Curvada
Color primario de	CISEM	1	Blanco
semilla	" and the state of	Ž	Café claro
Your for the to take the fore		3	Roje clare
		4	Rubio oscuro
		ร์	Gris
		6	Púrpura.
		7	Negro
Color del jaspe o	СЛИ	0	Ausente
moteado		1	Café claro
		2	Anaranjado
			cafesusco
		3	Café oscuro
		4	Negro
		5	Rojo claro
Brillantez de la	BRISEM	з	Opaco
semilla		5	Intermedio
		7	Brillante
Forma de la	FSEM	2	Ovaidal
semilla		4	Casi cuadrada
		8	Arriñonada recta
			al lado del hilo
		9	Arriñonada curva
			al lado del
			hilo.

Acces.	TDUA	CIA	232	240	241	246	248	250	251	256	257	259	261	263	764	267	269	273	275
Ciala	1	1	1	1	3	1	1	1	3	1	1	1	1	1	1	1	1	1	1
C2ALA	0	0	¢	9	0	0	0	0	0	0	0	0	0	0	0	0	1	Q	0
PCZALA	0	Đ	0	Û	0	0	¢	0	0	0	Đ	Û	Û	0	ø	0	2	ø	0
CYALA	1	1	1	2	1	3	j	i	1	i	1	1	1	1	1	1	1	1	1
CJEST	i	1	i	1	1	1	i	1	1	1	1	i	1	1	1	1	1	1	1
C2E57	0	0	2	2	2	7	2	2	7	2	2	2	0	2	2	2	2	2	2
PCZES?	2	9	2	0	7	0	2	2	7	7	0	2	Đ	2	Ō	9	2	2	2
CTUBEST	2	i	3	i	1	i	i	1	3	3	1	1	1	3	1	1	1	2	2
CVAIRA	1	ì	3	5	į	\$	i	6	5	6	1	5	j	5	1	1	1	3	5
PCVAINA	1	1	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
POSP1VA	1	i	1	1	1	1	2	1	i	1	1	2	3	1	1	1	1	ł	1
1168A9]	7	5	7	5	5	5	5	7	3	7	5	5	7	5	7	7	5	5	5
CPSEN	5	4	3	6	3	3	3	3	3	3	3	3	7	3	2	3	3	1	1
can	Þ	9	0	Û	0	9	Đ	0	9	9	0	0	0	ø	0	ø	Q	0	0
FSER	7	2	2	2	4	2	2	2	4	ņ	2	- 4	2	4	4	4	4	2	4
BSEM	7	7	7.	7	7	7	7	7	7	7	7	7	5	7	5	7	7	7	7
HC	115	116	lib	116	116	116	11b ⁱ	lla	Ha	llb	11b	116	13b	lla	lla	116	lla	lla	11b
INFLOR	38	30	34	35	35	36	33	38	36	31	35	3B	37	37	36	33	36	33	30
SIMFLOR	53	50	49	49	52	53	49	52	45	52	52	52	52	49	23	52	54	49	47
DURFLOR	21	19	15	18	18	12	70	16	19	16	21	17	16	16	14	23	17	18	17
MADE 15	65		62	60	90	62	90	66	62	62	64	67	64	60	66	60	óó	60	54
INUCICIO	35		34	49	38	35	39	35	43	33	37	36	32	34	31	37	38	31	30
COSECHA	73	88	66	66	88	66	66	69	68	75	69	71	69	66	71	67	71	68	60
	276	279	285	297	294	298	306	313	316	317	318	319	320	322	326	327	328	330	332
CIALA	1	3	3	1	1	1	j	1	3	2	1	1	Ī	3	1	1	3	1	1
CZALA	0	0	Ð	0	9	0	0	0	9	9	0	0	0	j	Ð	0	0	0	0
PC2ALA	0	0	ø	9	Ō	0	ø	0	0	0	0	7	Đ	2	0	0	0	1	0
CVALA	1	1	1	1	i	1	1	j	1	3	2	1	1	- 1	1	1	3	1	1
C1EST	3	1	1	1	1	1	1	3	1	3	3	1	1	1	1	1	1	1	1
C2EST	2	_	Ð	2	2	2	?	2	2	0	0	2	2	2	0	2	2	0	2
PCZEST	Ð	-	2	2	0	2	7	0	2	0	Q	2	0	2	2	2	2	0	2
CTUBES?	1	2	1	1	1	1	3	1	1	3	1	1	1	ı	1	2	1	1	1
CVAINA	}	I	1	1	5	5	3	1	Ь	1	1	5	1	1	5	1	1	7	1
PCVAINA	2	1	I]	1	1	į	1	2	2	3	i	2	1	1	į	1	1	1
POSPIVA	1	2	j	į	3	1	1	1	1	Ī	1	j	ī	1	i	J	1	1	1
IJPOVAI	5		5		5	5	5	5	5	3	3	5	5	7	5	5	5	5	5
CPSEM	2		7	6	4	2	1	3	3	7	f	3	1	3	P	3	3	2	
CJM	5		9	-	•		0	0	0	0	•	ø	0	0	-	0	Ð	0	0
FSER	4	4	4	4	9	4	2	4	2	4	4	4	4	2	2	2	_	4	2
BSEM	5	•	7	7	3		7	7	7	7	7	7	5	7	Į.	7	7	7	7
HC	1116	115	116	114	116	Ha	116		114		119			Пр	116		H	116	llb
INFLOR	36				31	34	38			37			29	38		37	34	30	
SIMFLOR	57												47			49		49	52
DURFLOR	23									-		16				_		16	
made 15	67	57	48	65	60	60	64	62	56	63	90	62	56	60	56	63	60	54	62

MADELS	62	ė.	6Ú	5 0	άÚ	62	67	56	60	67	56	62	68	52	56	60	67	60	63
DURCICLO	33	44	(4)	44	34	33	34	34	34	35	70	42	36	34	37	40	33	37	33
COSECHA	46	70	άŚ	68	58	£8	76	62	68	75	62	68	75	62	62	68	68	66	ėū
		4570		427/		4525													
iidia												1645							
CZALA	4	į	1	i i	1		3	į	1	1	į	1	1	1	1	2	3	1	1
PCZALA	ý ò	e e	9	v Ú	Û Õ	ÿ 0	0	0	0	0	0	9	9	0	0	Ü	0	0	Ò
CANTA	=	1	y i	-	•	V 4	0	ij	ŷ	0	()	0	0	ij	0	()	9	Ű	Ģ
CIEST	1 1	; ;	; ;	j	<u> </u>	4	1	3	4	1	\$	1	1	1	3	2	j	1	j.
£2£51	2	7	2	\$ 2	1 2		1 0	3	1	i	3	1	Î	1	3	3	1	1	i
PCZESI	0	2	2 0	0	Ž Ü	2	•	7	2	7	2	7	Ž	2	2	Û	0	7	2
CTUPEST	ł	<u> </u>	i	1	1	ý	2	Ò.	2	ŷ	2	3	7	7	0	9	2	2	
C'ALRA	2	1	1	-	-	i	į	•	3	1	j	1	3	1	3	Ì	ì	1	1
PCVAINA	1	2	1 1	1	1	1	į	1	1		3	ĕ	è	1	1	İ	5	_	5
POSPIVA	1	1	ı İ	1 1	1]	2	1	1		i	1	\$	3	ì	j	1	1	1
TIPOVAL	7	5	5	5	1	1	1	į	1	3	3	1	1	į	1	3	1	3	į
CPSEN	3	7	3		\$	3		7	7	3	5		7	,	5	5	3	e,	
C)M	ů	9	6	1	2	j	1	1	2		1	3	Ĩ			7	3		
FSER	4	2	¥	7	3	3 4	j	Ŷ		•	_	•	Ò	-	•	ņ	Û	•	•
B5E#	7	7	5	7	_		7	4	\$		4	2	4	_	4	4	2	-	
HC .			•	-	7	3	3	7	3	-		-	7		3	7.	7	7	ā
THELDR	lib -:	lib	116	lib	Hb	116	Hb	110	116	llh	lla	116	114	llb	llb	110	llb) ib	Hb
FINFLOR	36 49	34	38	35		37	36	37	37				36			35	15		3 P
DUSTLOS		52	52	40	52	59	52	52		49			54			奪	49	60	52
MADF 15	22 59	16	18	17	20	16							13		-		18	116	14
DURCICLO	37 37	02	62	67	62	67							60		62		60		
COSECHA	37 66	3.5	35	32	35	30						•	32			34	35	35	30
POSERBA	DD	68	67	70	67	67	70	67	75	67	66	67	72	68	60	68	66	68	68
	1659	1662	1664	1669	1672	1677	1686	1689	1710	1770	1777	1724	1730	1773	1739	1740	1781	1747	1761
CIALA	1	1	i	1	Ş	1	1	1					1		,,,,, ,	3,70 j	1		
CZALA	ŷ	ÿ	Ŷ	ø	Đ	0				_	-		_	_			Ó		_
PCZALA	Û	v	9	0	Ò	ŷ	,					*	•	-	-	-	Ó		-
CVALA	1	1	1	1	į	1	1	4	1	•	•	•	3	•	j	1	j		
Clest	§	i	1	1	Ì	1	ì	4	_	•	-		i	_	1	1	1	-	
CZEST	2	2	7	7	ŷ	Đ	2	2		_			2	_		_	2		
PCZEST	2	ij	Q	ø	7	2	ù	þ	_	-	-	_				_	0		
CTUBEST	1	â	3	i	j	j	j	1	_	_		-	1			j	ı		•
(VA) NA	1	į	1	ì	5		}		_				1			, 5			-
PCVAINA	1	1	1	Ī	}	1							j				7		-
POSPIVA	1	į	j	1	1	1	ì	i				-	1			_	1		_
TIPOVAI	5	5	5	. 7	7	5	. 7	3		-		_	_	-	-	•		-	_
epsen	1	4	3	. 4	2			_		-	-	_	-	-				•	
CJH	ŷ	. 6	0	ò				•		_	_	-	_		-	•	-		
FSEM	*	7	2	7			•	•	•	•	•	•	•	-	-		•	•	•
BSEM	7			5			_				_		-			-			_
K	lia	116	110	lla	lib	Hò	lla			llh		37	Hb		•	_		lib	•
]#FLOR	35																		
SINFLOR	54																		
			_		•	•	,,	***	7.5		- 44			, 4 <u>7</u>		747	47	52	47

SINFLOR	49	54	47	47	52	54	51	54	47	49	52	52	49	52	47	49	52	47	49
PURFLOR	12	16		٠.		13	16	-		20				16		24			13
MADEIS	56	62	54	5&		62	64	66	56	54	56	60	62	67	58	67			66
DURCICLO			30	37	30	21	31	32		37			56	35	32				36
COSECHA	åŝ	68	60	66	63	67	70	74		66	69	62	69	75		70		62	72
	2337	2339	2343	2352	2367	2535	2576	2676	2681	2698	2704	2716	2717	2718	2719	2720	2721	2722	2724
EIALA	į	1	ì	l	1	1	1	1	1	ı	1	1	1	1	1	1	1	i	1
CZALA	Ą.	1	1	0	Ģ	0	Ą	Ģ	ij.	0	0	Q	0	0	0	Ü	0	Û	Û
PC24_A	Q	2	2	Ŷ	Q	Ğ	ņ	0	Q.	Ú	0	7	0	()	0	Ŷ	0	Q	Q
CVALA	2	i	1	ž	ξ	Ł	ł	1	1	1	4	1	1	1	1	1	1	1	1
CIEST	i	1	1	1	1	1	1	1	1	1	4	į	1	1	1	1	1	1	1
CZEST	Z	2	1	2	2	2	2	Z	J	2	2	2	2	2	2	2	2	2	2
PCZEST	*	2	4	Ů	2	Ģ	ø	2	0	Ž	0	2	2	2	Ų	ij	2	0	2
CTUBEST	1	1	1	Ţ	Ī	1	1	1	1	I	1	1	1	2	1	1	1	1	1
CVAINA	5	1	1	1	ò	1	1	à	k	1	1	P	é	1	1	1	5	1	1
PCVALHA	i	1	ı	1	y 2.	2	1	į	1	1	ı	ì	1	1	1	1	Ī	1	1
POSP (VA	ž	1	1	1	Ł	ŧ	1	1	1	2	Ĺ	Ĭ.	2	1	1	1	1	1	í
TIPOVAL	5	5	7	Ī	5	3	7	5	7	7	5	5	5	7	7	5	5	5	7
CPSEM	7	b	3	3	2	6	4	3	3	4	2	3	3	2	3	3	3	4	3
CJM	9	Ģ	0	0	Q	0	ij	ą	Q	Q	0	Q	Q	Q	0	Q	Q	Q	¢
FSEM	4	Ę	4	ŧ	2	2	Ü	\$	8	2	ä	2	4	£	2	Ę	7	Ę	ફ
BSEM	7	5	7	5	7	2	7	7	7	7	7	7	7	7	3	7	2	3	7
HC	[[5	He		Ub	lla	115	Hb	115	115	113		115	113		115		Hb	ď!	He
inflor	17	27	17	44	37	23	47	37	33	18	31	33	40	37	37	32	31	38	37
31NF_0F	* *	27	54	75	\$.5	1.3	52	53	52	52	46	47	45	56	57	44	47	52	52
SUAFLOR	15	17	16	15	27	20	13	14	17	21	15	17	14	16	17	16	16	17	15
MADFIS	Ž-1	£ 5	á.	62	٥Ĵ	57	67	63	66	62	56	56	63	67	62	07	56	56	67
DURCTCLS	33	31	33	30	33	34	34	33	34	37	. 32	30	34	35	34	34	31	33	28
COSECHA	άĮ	52	75	άŤ	73	e?	75	70	71	171	71	65	75	71	68	88	62	68	75
C18: 3						7970									2942				2953
CIALA		1	į	3	1	Î.	Ž	1	1	2	1	1	1	i	j	;]	3	1
CZALA CCON A	\$	0	Q A	0	Ø	9	ņ	0	0	0	0	9	Û	0	0	1	þ	Û	0
PCZALA	ŷ	0	0	0	9	0	0	0	0	0	ō	0	9	Ø	(ì	2	0	Û	0
CVALA	ì	1	1	1	دُ	3	į	1	3	1	1	1	1	1	1	1	1	1	1
CIEST	,	1	1	1	į	3	1	1	3	1	1	1	3	1	1	1	1	1	1
CZEST	2	2	7	Ģ	<u> </u>	2	2		2	0	2	2	2	2	2	2	2	2	2
PC2EST	2	0	2	2	0	0	2	2	0	2	0	2	2	2	2	2	2	2	0
CINNEST	2	1	2	1	1	3	2	2	3	1	1	1	2	2	1	2	1	i	1
CYAJAA	2	3	3	5	7	₿	5	6	5	5	6	j.	1	5	1	ŕ	5	1	1
PCVAIRA	1	2	j	1	I	7	3	1	j	1	1	ı	2	j	1	1	1	1	1
POSP1VA]	1	į	1	1	į	1	j	1	1	1	1]	1	2	i	1]
TIPOVAL	5	3	5	Ş	7	5	5	5	5	7	5	5	5	5	5	<u>.</u>	7	7	5
CPSEM	2	3	3	1	6	2	1		4	7	3	1	ξ.	3	1	4	6	į	3
CJR	0	0	9	5	9	0	9	0	0	0	0	0	9	0	0	0	0	0	0
FSEN	4	?	Ÿ	2	?	2	4	2	4	9	2	4	4	2	2	2	4	4	9
BSEM	, 7	. 3	5	7	5	3	7	7	7	. 7	3	7	7	7	3	7	3	7	3
HC.	116	11a	IIb	lla	dit	116	115	110	H	113	119	11D	liD	11D	JjD	IJÞ	110	IIb	11b

	A	NEX	O N	123	CAT	'ALC	GO	DE	CAI	RAC.	rer:	ES	CUA	LIT	ΛTΙ	vos	,		
atic starrage	************			(******* ******		- 14 M PO - 4 VIII PO PO - 14 VIII PO PO PO PO PO PO PO PO PO PO PO PO PO				**************************************						1,5,7) A 107 A 10 10 10 10 10 10 10 10 10 10 10 10 10	***************************************		
INFLOR	31	37	31	31	37	34	31	39	33	32	31	33	28	29	32	29	32	38	31
SINFLOR	47		47	47	54	54	47	49	54	52	54	49	40	45	49	49	49	51	47
DURFLOR	16		20	16	19	f8	15	18	18	10	16	15	15	21	16	21	16	27	16
KADFIS	54		56	56	62	63	56	54	67	60	60	60	52	54	57	56	56	64	56
DURCICLO	35		33	36	33	35	30	25	37	31	34	33	29	46	32	44	33	42	31
COSECHA	60)	70	67	56	46	75	62	66	71	66	68	66	62	60	62	66	62	69	62
	2954	2955	2957	2761	2962	2763	2971	2972	2983	2984	2985	2986	2789	2995	2997	2998	3002	3005	3006
CIALA	I	l	1	2	1	ı	ł	1	i	1	1	1	ŧ	l	1	1	i	i	1
CZALA	0	0	0	Q	Q	0	ą	Ģ	Ú	¢	Q	Q	0	Q	¢	1	Q	0	0
PCZALA	9	0	Q	0	Ģ	0	ű	Q	Ü	0	0	9	0	g	0	1	Û	0	0
EVALA	1	1	2	ı	1	1	1	1	1	į	1	1	1	i	1	1	1	1	1
CIEST	Ł	1	3	Ĺ	ž	1	1	1	i	1	£	Ł	Ł	1	1	1	1	1	1
CZEST	2	2	2	Z	2	2	2	2	7	2	2	2	2	2	2	i	2	2	0
PCZEST	4	Ξ	0	2	2	0	0	2	Ô	0	8	2	2	2	0	Û	2	2	2
CTUBEST	Į.	2	3	2	ı	1	Ł	I	1	1	1	1	i	ŧ	1	i	1	1	2
CVAING	1	5	į	5	5	ì	i	5	Į	L	1	ţ	5	5	5	6	é	Ş	1
PCVAINA	1	1	Į	i	1	1	1	ŧ	1	2	1	I	I	1	i	i	1	1	2
POSP I VA	i	1	1	1	i	1	1	i	L	1	1	1	1	1	1	ı	1	i	i
IPOVAI	7	5	5	5	5	5	7	5	5	5	5	5	5	5	5	5	5	5	5
CPSEM	4	6	4	4	3	i	1	2	3	I	3	3	4	ž	3	3	3	6	3
CJN	9	9	9	3		3	Ł	1	2	ø	Ô	0	0	0	0	Û	9	ş	Û
FSEM	ŧ	1	2	2	2	2	2	14	2	4	2	2	2	2	4	2	2		2
BSEM	7	3	2	I	7	5	5	7	1	7	7	7	7	7	7	7	7	7	7
HC	IIb	lib	[[b	IIb	115	[[b	llo	[lb	lla	116	Hb	[[6	Hb	Ilb	Hb	116	IIb	IIb	IIb
INFLOR	19	31	29	31	29	30	31	36	34	35	34	34	33	37	29	32	35	32	32
SINFLOR	52	47	49	47	47	47	47	52	58	52	54	49	49	49	45	47	52	52	49
DURFLOR	16	16	17	15	16	19	14	16	15	18	16	18	16	14	18	16	81	18	17
KADFIS	64	34	67	55	56	60	60	62	62	63		60	57	60	54	56	62	60	60
DURCICLO	37	29	36	33	32	36	37	33	38	35	33	32	31	30	35	31	31	38	64
COSECHA	70	40	44	66	68	66	66	88	66	69	71	68	66	68	62	62	88	66	66
	3012	3014	3025	3027	3029	3037	3039	3043	3045	3058	3060	3073	3079	3097	3089	3090	3091	3093	3095
CIALA	1	i	1	1	1	1	1	J	1	2	Ì	2	2	Ì	1	j	1	1	1
CZALA	i	0	0	ø	1	0	9	Ò	0	0	0	ø	0	0	0	0	0	Q	0
PCZALA	9	0	0	Ò	0	0	Û	0	0	0	0	0	9	Ð	ø	0	Q	Q	0
CVALA	i	1	3	i	1	1	1	1	3	3	3	3	į	1	1	1	1	1	1
CIEST	1	1	i]	1	1	1	İ	3	j	3	3	1	i	1	1	1	1	1
CZEST	2	2	2	2	0	2	2	2	2	ø	2	0	0	2	2	2	2	2	2
PC2EST	2	2	9	2	2	0	0	2	0	2	0	0	7	2	2	2	2	0	2
CTUBEST	3	1	1	2	1	3	3	2	3	1	3	3	i	į	1	1	j	1	1
CYATMA	1	5	1	1	ŀ	1	5	1	1	1	8	5	8	7	5	5	.6	j	5
PCVAINA	1	1	1	j	1	1	1	2	3	1	i	3]	1	1	2	1	1	1
POSP34A	2	1	1	1	1	1	3	1	1	1	į	3	3	j	1	1	1	1	1
TIPOVAL	5	5	5	7	5	5	5	5	5	5	7	5	5	5	7	5	5	5	5
CPSEN	3	3	3	7	4	3	Ь	1	3	2	1	7	į	Ь	3	3	4	4	3
CJN	()	Ō	0	0	0	Þ	(i	ø	Ō	0	0	0	Ò	0	()	0	Ò	0	Û
FSEN	2	2	2	2	4	8	2	2	4	9	4	2	2	2	2	2	4	2	4
BSEN	7	5	3	3	7	7	3	7	5	3	3	3	7	7	7	7	7	7	7

HC	lib	110	llb	Hb		IIb	H	IIb	Ha	Hb	IIb	110	Ilb	lib	115	H	IIb	Ilb	Hb
INFLOR	35	32	31	37	32	28	22	32	39	31	35	35	31	31	29	31	33	21	32
SIKFLOR	47	49	52	25	49	52	49	49	54	47	32	47	47	47	47	47	52	47	47
DURFLOR	14	17	21	15	17	14	15	17	16	16	17	14	16	16	20	16	[4	18	15
Maris	62	56	62	82	56	67	52	60	64	56	60	54	54	56	56	56	62	60	56
DURCICLO	23	35	33	22	31	34	35	34	34	31	33	31	35	35	33	36	33	35	30
COSECHA	66	äò	69	67	62	72	86	6¢	72	62	69	66	66	66	62	67	δδ	56	62

CIALA			3105			3107											3194 1	3211	
CIALA	ĺ	i	1	1	1	ů.	1	1 0	į	1	1	1 0	1	1	1	1	0	0	1
CZALA PCZALA	0	ų Q	0	Q	4	Ç	Ů	2		0	2	0	Û	0	0	ņ	2	0	¢.
	9	¥	Q	-	_		•		0	-	_	_	-	-	-	1		1	_
CVALA	1		1	į.	l.	2	2	1	1	į	1 1	i 1	l	1 1	2	2	1	1	1
CIEST	l	i 2	1		1 2	2	l	i	1 2	2	1	2	1 2	2	2	0	1	2	2
CZEST PCZEST	2	0	2	٥	G	0	2	2	0	į	ú	0	ű	2	0	Į	2	0	Ú
CTUSEST	1	1	2	į	l	1	1	1	v 1	1	1	1	1	1	ı	ŀ	1	ı	1
CVAINA	1	1	1	1	5	5	1	1	1	1	6	1	1	7	1	1	6	8	5
PEVAINA	1	1	i	l	i	i	ì	1	1	1	1	1	ì	i	1	1	i	1	i
POSPIVA	•	1	į	1	1	ì	1	1	1	1	1	i	ì	1	1	1	ì	ì	i
TIPOVAL	7	Ş	5	5	7	Į.	Ş	5	7	Ş	5	3	7	5	7	5	5	5	5
CPSEM	4	4	7	4	2	3	3	3	1	3	3	3	2	3	3	4	i	3	6
CIM	Ů	ò	9	ò	ů	0	Ü	ő	ō	0	ű	0	ō	ű	ŏ	0	ō	ŏ	ő
FSEN	2	2	4	4	4	,	\$, 4	Ž	4	4	2	Z	2	2	2	4	4	4
BSEN	7	5	7	3	3	7	3	7	7	Ş	Š	3	7	7	3	7	7	7	7
HC	115	IIb	llb	Ha	lib	IIa	111	•	-	-	_	•	b [[]	b II	b 111	b III	HI	111	116
INFLOR	31	33	37																
SINFLOR	49	47	47																
DURFLOR	18	16	10	16								7 2	2 16				1 1		
MADFIS	62	62	53	6	60	60	64	62	2 60	5	2 63	2 6	2 60) 5	5 6	2 63	5 61	52	60
DURCICLO	16	35	31	34	33	29	46	32	2 41	33	3 43	2 3	5 3	7 2'	9 34	5 33	5 33	2 36	37
COSECHA	49	68	68	3 67	7 70	68	72	36 5	3 79	67	2 7:	5 7	2 69	3 6	2 7	1 70) 61	66	75
	3715	3716	3219	3277	3726	3232	3233	3238	3250	3279	3293	3294	3295	3298	3300				
CIALA	1	1	1	1	1	1	İ	1	1	1	1)	2	2	j				
CZALA	ø	0	Q	ø	0	0	0	0	0	i	0	1	0	0	0				
PCZALA	ģ	0	¢	0	0	0	9	2	0	2	0	0	0	0	0				
CVALA	1	j	1	1	1	į	į	1	į	İ	1	3	3	j	2				
CIEST	1	j	1	Ì	1	į	2	1	į	3	1	3	3	1	į				
CZEST	2	2	2	2	2	2	2	1	Q	2	2	2	2	0	2				
PC2EST	Ģ			2	2	0	ţ	2	2	2	2	0	()	2	0				
CTUBEST	į	1	j	1	1	1	1	2	1	ţ	2	3	3	i	i				
CVAINA	3	5	1	1	1	7	c,	7	1	5	i	i	1	5	i				
PCVAINA	3	3	1	1	1	3	2	1	3	1	3	į	1	1	1				
POSPIVA	j	3	j	1	1	1	ţ	2	1	į	1	1	3	i	1				
TIPOVAL	5			5,	5	5	5	5	5	7	Ş,	5	5	5	Ę,				
			-		-	-			-		-	-	2	7	7				

7 7 1

3 2 3

3

CPSEN

ean Fren 3 1 2

BSEN	7	7	7	7	7	7	7	3	3	7	3	7	7	7	7
HC	Hb	lib	H	Hilb	[[b	lib	Hb	IIb	116	Πħ	[[b	115	116	lla	Hb
INFLOR	36	37	38	33	36	31	30	Ji	31	31	31	36	34	33	33
SINFLOR	52	37	54	44	54	47	44	49	47	47	47	56	49	49	47
DURFLOR	ić	15	18	-16	18	16	14	18	16	18	19	20	15	16	16
MADFIS	ěš	67	62	62	62	56	47	56	57	56	60	67	57	56	62
DURCIO.	33	28	32	33	32	31	30	35	51	31	78	35	26	35	33
COSECHA	57	75	ьЯ	65	93	62	60	46	62	62	69	71	62	68	66

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=232					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
NAUDOS	3.000	3.000	3.000	0.000	0.000
LDM6VA)	8.700	10.800	10.000	0.700	7.000
NL DCVA)	4.009	7.000	5.800	1.095	18.887
RSENVAL	5.000	6,000	5.200	0.447	8.600
nvalpla	9.000	23.000	14,400	7.436	51.642
ACCESIBN=240					
Yariab)e	Ninimo	Máximo	Redia	Desv. Est.	E.V. (2)
NNUDOS	4.000	4.000	4.000	0.000	0.000
[(AVBVA)	7.100	9.700	8.360	0.844	10.100
WEDEVA)	4,000	6.000	5.200	0.837	16.090
#SEMVA]	3.000	6.000	3.600	1.342	37.26B
KVAJPLA	2.000	4.000	2.800	1.095	39.123
ACCESTON=24L					
Variable	Hinimo	Māximo	Media	Desv. Est.	C.V. (Z)
AMUDOS	3.000	3.000	3.000	9.000	0.000
1 DNGVA]	9.700	11.500	10.580	0.754	7.137
MLOCVAI	6.000	7.000	6.600	0.548	8.299
nsemva]	5.000	7.000	5.800	0.837	14.425
NVAJPLA	8.000	17.000	11.800	3.701	31.367
ACCESION=246					
Variable	Minimp	Máxieo	Media	Desv. Est.	C.V. (Z)
nnudos	3.000	3.000	3,000	0.000	0.000
LONGVAI	3,400	10.700	8.880	3.075	34.631
NLOCVA)	6.000	6.000	6.000	0.000	0.000
NSERVAI	5.000	7.000	6.000	1.000	16.667
NVA] PLA	3.000	11.000	7.200	3.768	52.337
ACCESION=248					
Variable	Minimo	OMÉKÁN	Media	Desv. Est.	C.V. (%)
naudos	3.000	3.000	3.000	0.000	0.000
l (ngya)	9.000	9.800	7.480	0.356	3.759
HLDCVAT	5.000	6.000	5.600	0.548	9.781
nsenvaj	4.000	6.000	5.400	0.894	16.563
NVA JPLA	1.000	3.000	2.200	0.837	38.030

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=230					
Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (1)
NUDBS	3.000	3.000	3.000	0.000	0.000
L () NSVA	7.800	10.400	8.760	1.033	11.797
HLBCVA	5.000	7.000	6.400	0.548	8.558
NSERVAL	5.000	6.000	5.200	0.447	8.600
HVAJPLA	3.000	6.900	4.200	1.304	31.044
46CE91 0 N=251					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (7
880005	3.000	3.000	3.000	0.009	0.000
1 DWBVA]	10.000	10.600	10.180	0.249	2.446
nlocva i	6.000	6.000	6.000	9.000	0.000
nsenva]	4.000	000.4	5.000	0.707	14.142
nvaipla	4,000	7.000	004.4	2.074	31.419
ACCESTON=256					
Variable	Kinimo	Máximo	Redia	Desv. Est.	C.V. (Z)
MUDIS	3,000	3.000	3.000	0.000	0.000
f GWBAU]	19.000	12.500	11.325	1.075	9,493
MLDCVAI	6.000	6.000	6.000	0.000	0,000
nsenval	5.000	6.000	5,750	0.500	8.696
rya)Pla	5.000	12.000	8.500	3.109	36.578
ACCESION=257					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
MEDOS	3.000	3.000	3.000	0.000	0.000
LCNGVAT	9.300	10.300	9.600	0.400	4.167
nlocvai	6.000	7.000	6.200	0.447	7.213
nsenva]	4.000	6.000	5.600	0.894	15.972
RVAJFIA	3.000	7.000	5.200	2.049	39.411
ACCES104=259					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (X)
ANUDOS	3.000	3.000	3.000	0.000	0.000
l Daevaj	8.900	10.000	9.320	0.409	4.385
NLDEVAI	5.000	7.000	5,400	0.894	16.563
KSEHVAI	4.000	6.000	5.400	0.894	16.563
RVA]Pl A	2.000	6.000	3.400	1.673	49.715

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON= 2	61					
¥.	ariable	Minimo	Máriao	Media	Desv. Est.	C.V. (2
į	CHINOS	3.000	3.000	3,000	0.000	0.000
	[AVAII]	10.300	11.900	11.180	0.610	5.455
3	OLOCVAI	6.000	9,000	7.000	0.707	10,102
	esenvaj	3.000	7.000	5.000	1.581	31.623
ÿ	rya)Pla	5.000	11.000	7.500	2.191	28.828
ACCESTOM=26	τ					
	/ariable	Minimp	Marian	Hedia	Desv. Est.	C.V. 12
9	unidos	3.000	3.009	3.000	0.000	0.000
ı	DNSVA)	9.400	9.500	9,140	0.351	3.837
;	ROZVAJ	5.009	4.000	5.800	0.447	7,711
į	(SERVA)	4.000	6.000	5.600	0.894	15.972
,	eva) Pla	3.000	5.000	4,200	1.095	26.082
ACCESION=284	,					
•	Variable	Minimo	Maximo	Media	Desv. Est.	C.V. (7)
,	PAUDOS	3.000	3.000	3.000	0.000	0.000
i	[MEVA]	7,900	11.400	10.760	0.764	7.096
,	r Devai	5.000	7.000	6.000	0.707	11,785
,	rsenvaj	5,900	7.000	6.000	0.707	11.785
,	WA)FLA	8.000	17.000	12.600	3.847	30.532
ACCESION=261	,					
١	Variable	Minjao	naixan	Media	Desv. Est.	c.v. (1
i	MIDDS	3.000	3.000	3.000	0.000	0.000
ļ	Longyai	9.400	10.500	10.160	0.472	4,648
	rlocya)	6.000	7.000	6.400	0.548	8.558
)	(SENVA)	4.000	7.000	5.400	1.140	21.114
1	NYAIPLA	4.000	20.000	10.600	6.693	63.144
ACCESION=269	}					
Vi	ariable	Minisu	Máximo	Media	Desv. Est.	C.V. 13
	erubos	3.000	3.000	3.000	0.000	0.000
	LONGVAI	9.100	10.100	9.660	0,404	4.179
	NEVAL	5.000	6.000	5,800	0.447	7,711
	KSEKVAT	6,000	7.000	6.700	0.447	7.213
1	evajpla	5.000	17.000	13.000	4.301	33.086

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=273						
Vai	riable	Minimo	Maximo	Media	Desv. Est.	£.v. {Z
un)	1005	3.000	5.000	4.400	0.894	20.378
101	(AVA)	8.700	9.800	9.240	0.351	3.796
ME	CYA]	6.000	6.000	6.000	0.000	0.000
MSI	ENVAI	5.000	6.000	5.200	0.447	8.500
HVI	SIPLA	4,000	8.000	5,400	1.673	30.987
ACCESION=275						
	eldai	Minimo	dwike	Media	Desv. Est.	C.V. (Z)
H.E.	IDOS	2.000	3.000	2.800	0.548	21.066
LO	(Bya)	8.700	11.000	9.920	0.968	9.758
M. (XVA1	5.000	7.000	6.600	0.894	13.552
N3 6	NVA]	3.000	6.000	5.000	1.225	24,495
MAY.	MPLA	2.000	11.060	6.400	3.507	54.799
ACCESION=276						
Var	iable	Ninimo	Maximo	Media	Desv. Est.	C.V. (X
H K	1005	3.000	3.000	3.000	0.000	0.000
T Dix	16Y4)	10.600	12.200	11.440	0.594	5.194
	(CVA)	7.000	7.000	7.000	0.000	0.000
	#VA]	5.000	7.000	6.000	0.707	11.785
NYA	IIPLA	6.000	14.000	101400	3.578	34.401
ACCES10N=279						
Vari	9146	Minimo	Máximo	Media	Desv. Est.	C.V. (7)
MNU	DOS	3.000	3.000	3.000	0.000	0.000
T (U)	6VA]	9.000	10.900	7.780	0.896	9.157
WL D	CVA1	3.000	6.000	5,000	1.225	24.495
NSE	nva]	3.000	6.000	5,000	1.225	24.495
Ky4	IPLA	1.090	5.000	3.000	1.581	52.705
ACCESION=285						
Vari	able	Minimo	Máximo	Media	Desv. Est.	C.V. (%)
MILL	D05	3.000	3.000	3.000	0.000	0.000
	Bya!	8.500	11.200	9,960	1.011	10.155
	eva)	6.000	7.000	6.200	0.447	7.213
	nva]	5.000	6.000	5.400	0.548	10.143
NVA)PLA	4.000	13.000	9.400	3.507	37.310

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=289					
Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (1
MUDOS	3.000	3.000	3.000	0.000	0.00
LONGVAI	10.000	11.400	10.900	0.622	5.70
#LOCVA1	6.000	7.000	6.750	0.500	7.40
nsenva (4.000	6.000	5.000	0.816	16.33
nvaipla	4.000	13.000	7.500	4,041	53.88
ACCES) DX=794					
Variable	Minimo	Háximo	Media	Desv. Est.	C.V. (7
MANUOOS	3.000	3.000	3.000	0.000	0.00
CONGVAI	8.000	9.800	8.800	0.735	8.35
MLOCVAI	5.000	6.000	5.600	0.548	9.78
asenva i	4.000	6.000	4.400	0.874	20.32
NVATPLA	1.000	5.000	3.200	1.643	51.34
ACCESION=298					
Variable	dinimo	Máximo	Media	Desv. Est.	C.V. (%)
MNU90S	3.000	3.000	3.000	0.000	0.000
LONGVAI	15.105	10.500	10.380	9.164	1.583
NEECVAT	5.000	6.000	6.000	0,000	0.000
nsen941	4.000	6,000	5,400	0.894	16.563
RYAIFLA	5.000	14.000	9.400	3.912	40.745
ACCES16N=306					
Variable	nining	កើត់នៅទទ	Media	Desv. Est.	C.V. (Z)
NNIDES	3.000	3.006	3.000	0.000	0.000
lonsva:	9,700	12.100	10.580	0.755	7.140
#LDE.VAJ	6.000	7.000	6.300	0.483	7.667
nsenva]	5.400	7.000	5,600	0.843	15.058
MVA]Pla	5.000	20.000	9.300	4,244	45.834
ACCESION=313					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2
MNUDOS	3.000	3.000	3.000	0.000	0.000
L DXGVA]	9.600	10.000	9.840	0.182	1.846
MLDEVAL	6.000	7.000	6.600	0.548	8.299
HSEMVAJ	5.000	7.000	6.200	0.837	13.495
47A]Pla	5.000	10.000	6.800	1,949	29.536

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=316	iable	#/m	WALLE-	Marel Co.	B	a
var:	19016	Minapo	Maximo	Media	Desv. Est.	C.V. (2)
JENE	ADOS	3.900	3.000	3.000	0.000	9.000
LDI	reva]	6.000	11.000	9.540	2.104	22.057
X1.	CEVAI	6.000	7.000	6.800	0.447	6.577
#58	HVAI	5,900	7.000	5.800	0.837	14,425
34/	AIPLA	2.000	8.000	5.200	2.387	45.913
ACCES19N=317						
Vari	able	a uniaið	Maximum	Nedia	Besv. Est	E.V. 17
HOL	105	3.090	3.000	3,000	0.000	0.000
LOKE	VA]	9.000	10.900	10.786	0.679	6.604
AL DE	YA]	6.000	8.000	7.000	0.816	11.664
HSEM	IVA]	3.000	7.000	5.714	1.380	24.152
HVA]	Pla	8,000	1B.000	11.429	3.994	34,94
ACCESION=318						
Var i	able	Minimo	Máximo	Media	Desv. Est.	C.V. (7)
RM)	D05	3,000	3.000	3.000	0.000	0.000
LON	SVA]	9.700	11.000	10.120	0.904	8.932
HLO	CVA)	5.000	7.000	6.200	0.837	13.495
NSE	nya]	4.000	7.000	5.200	1.095	21.066
RVA	IPLA	4.000	15.000	8.600	4.219	49.058
ACCESTON=319						
Vari	ab)e	Minimo	Máximo	Media	Desv. Est.	C.V. (1)
MAN)	DOS	3.000	5.000	4.200	1.095	26.082
£ (3#	6VA]	7.600	9,400	8.700	0.707	8.128
NLO	CVA)	5.000	6.000	5.200	0.447	8.600
#SE	MUA	4.000	5,000	4.400	0.548	12.44B
ava	ipla	3.000	8.000	4.800	1.924	40.074
ACCESTON=320						
Yari	able	Minimo	Máximo	Media	Desv. Est.	C.V. (%)
NNU	DOS	3.000	3.000	3.000	0.000	0.000
	SVA)	10.300	11.700	10.840	0.607	5.5%
	CVA)	6.000	7.000	6.400	0.548	8.558
	MVA]	5.000	7.000	8.000	0.707	11.785
-7 ₂ /1_1	4 h. 9	** **	* * VVV	D. UVV	A*1A1	232500

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=322					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
KNUDOS	3.000	3.000	3.000	0.000	0.000
LURGVAI	7.500	10.600	9,920	0.460	4.641
HLOCVA)	5.000	7.000	6.000	0.707	11.785
MSEMVAI	5.000	6.000	5.800	0.447	7.711
nvalpla	3.000	6.000	5.400	5,413	84.577
ACCESTON=326					
Variable	Kiniso	Máxieo	Media	Desv. Est.	€.V. (X)
NUCLOS	3.000	3.000	3.000	0.000	0.000
L[MEVA]	9.400	11.600	19.680	0.832	7.789
MLOCYA1	3.000	7.000	6.400	0.894	13.975
hsenva]	4.000	5.000	4.400	0.548	12,448
nva19la	5.000	16.000	8.600	4.336	50.417
ACCESION=327					
Variable	Hinimo	Máximo	ffedia	Desy. Est.	C.V. (7)
RHUDOS	3.900	3.000	3.000	0.000	0.000
l (Méva)	9.100	10.700	7.800	0.707	7.215
W. Deval	5.000	7.000	5.600	0.894	15.972
HSEHVAI	4,000	6.000	5.000	0.707	14.142
KVAIPLA	5.000	B.000	6.200	1,304	21.030
ACCESION=328					
Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (2)
NHUDOS	3.000	3,000	3.000	0.000	0.000
l (MSVA)	8.300	11.000	9.880	1.080	10.934
NLOCVAI	5.000	7.000	6.200	0.837	13.495
nsenyaj	2.000	6.000	4.400	1.673	38.030
XVAJPLA	3.000	12.000	9.000	3.536	39.284
ACCESTOR=350					
Variable	Minimo	gačkeM	Media	Desv. Est.	C.V. (X)
NAMAGOS	2.000	4.000	3,000	0.471	15.713
Longval	8.900	11.600	10.210	0.818	8.016
ML DCYA)	5.000	8.000	6.300	0.823	13.068
MSEMVAI	4.000	7.000	5.400	0.843	15.616
NYAJPLA	3.000	14.000	8.800	3.910	57,501

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=332					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (X)
MUDOS	3.909	3.900	3.000	0.000	0.000
LOXEVAL	8.800	10.400	9.560	0.695	7.270
HELLEVAL	6.000	7.000	6.800	0.447	6.577
MSEMVAJ	2.000	5.000	4.800	1.643	34,233
RVAJFLA		20,000	13.000	6.403	49.255
ACCESTON=422					
Variable	finimo	Máximo	Media	Desv. Est.	C.V. (2)
NUMBER	3.000	3,000	3.000	0.000	0.00
LAVANGL	7.000	12.309	10,475	1.477	14.10
KLOCVA)	6.000	7.000	8.250	0.500	8.00
nsenya i	5.000	7.000	5.750	0.957	16.65
nvalpla	3.000	8.000	5.250	2.630	50.09
ACCESION=445					
Yariab)e	Minimo	Маківо	Media	Desv. Est.	C.V. (1)
NAUDOS	3.090	3.000	3.000	0.000	0.000
LONGVAJ	9.100	11.800	10.400	1.032	9.923
域_()CVA)	6.000	7.000	6.600	0.548	8.299
hsenva]	4.000	7.000	5.400	1.517	28.085
MVAJPLA	1.000	9.000	4.800	3.271	6B.148
ACCESTON=50B					
Variable	Mánimo	Máximo	Media	Desv. Est.	C.V. (%)
AMUDOS	3.000	3,000	3.000	0.000	0.850
FENERAL	9.500	13.500	11.600	1.712	14.756
ML DCVA1	4.000	7.000	6.200	1.304	21.030
rsenva]	4.000	7.000	5.800	1.095	18.897
MYAJPLA	7,000	19.000	11.000	4.637	42.153
ACCEST OX= 510					
Variable	Binise	Máximo	Media	Desv. Est.	E.V. (I)
MNUDOS	3.000	3.000	3.000	0.000	0.000
l engya i	9.500	10.800	10.300	0.700	6.796
NLOCVAI	5.000	6.000	5.667	0.577	10.189
MSEMVA]	3.000	6.000	4.333	1.528	35.251
NVA]F <u>l</u> a	5.900	8.000	6.333	1.528	24.119

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=512				<u>.</u>	
Variable	Minimo	Maximo	Hedia	Desv. Est.	C.V. (X)
NNUDUS	3.000	5.000	3.400	0.894	26.307
1 (M6VA)	6.900	9.300	8.320	1.209	14.533
HL OCVAI	6.000	7.000	6.400	0.548	8.558
nsenva)	3.000	7.000	4.800	1.483	30.901
NVAJPLA	5.000	13.000	7.400	3.209	43.370
ACCESTON=520					
Variable	Miniac	Máximo	Media	Desv. Est.	c.v. (1)
nnudgs	3.000	3.000	3.000	0.000	0.000
LOAGVAI	9.500	11.700	10.280	0.907	8.819
MLDC VAI	6.000	7.000	6.400	0.548	8,558
ASERVA	5.000	6.000	5.600	0.548	9.781
nvaipla	9.000	18.000	11.200	3.834	34,233
ACCESION=5Z2					
Variable	Miniwo	ñáxi#p	Media	Desv. Est.	C.V. (7)
MADES	3.000	3.000	3,000	0.000	0.000
LONGVA	8.000	9.000	8.460	0.445	5.260
NL DCVA)	5.000	6.000	5.600	0.548	9.781
HSENVA)	4.000	6.000	5.600	0.894	15.972
AVAJPLA	3.000	17.000	9.600	5.879	61.450
ACCESION=523					
Variable	finimo	Maximo	Media	Desv. Est.	C.V. (7)
RKUDOS	3.000	3.000	3.000	0.000	0.000
LONGVAI	7.500	11.000	10.129	0.606	5.987
MF (MEAN)	5.000	7.000	6.700	0.837	13.495
nsenval	5.000	6.000	5.690	9.548	9,781
nvajela	4,000	16.000	11.200	4,550	40.623
ACCESION=626					
Variable	Miniso	Máximo	Nedia	Desv. Est.	C.V. (X)
MAUPUS	3.000	3.000	3.000	0.000	0.000
(AVEVA)	9.400	10.500	9.980	0.540	5.415
M (ICVA)	4.000	7.000	6.200	0.447	7.213
ASENVA	4.000	7.000	5.800	1.095	18.807
NVAIPLA	5.000	20.000	10.200	6.099	59.796

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTUM=						•
	Variable	Minimo	Máximo	Media	Desv. Est.	C.Y. (Z)
	HHUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVA	9.500	11.700	10.580	1.052	9.945
	XLDEVA	6.000	9.000	7.200	1,304	18.109
	nsenval	4.000	7.000	5.800	1.095	18.887
	wa]Pla	5.000	8.000	6.600	1.140	17.275
ACCESION=	636					
	Variable	Minimo	Māximo	Media	Desv. Est.	C.V. (X)
	KAUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAL	7.000	12.300	10.475	1.477	14.103
	MERCVAL	4,000	7.000	6.250	0.500	8.000
	RSERVAI	5.000	7.009	5.750	0.957	16.651
	HVAIPLA	3.000	B.000	5.250	2.630	50.094
ACCES!ON=	837					
	Variable	កីរចរុស្ស	Maximo	Media	Desv. Est.	C.V. (2)
	MANUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	7.100	11.200	10.340	0.929	8.784
	ALOCVA)	6.000	7.000	6.200	0,447	7.213
	NSENVAL	3.000	6.000	5.200	1.304	25.074
	mva]Pla	1.000	16.000	6.600	5.771	87.434
ACCES 10M=1	247					
MGGCG (EM-)	Variable	Minjao	Máximo	Media	Desv. Est.	C.V. (1)
	MANDOS	3.000	3.000	3.000	0.000	0.000
	LONGVA]	9.400	11.000	10.580	0.669	6.319
	ML DCVA]	6.000	7.000	6.200	9.447	7.213
	nsenva!	4,000	6.900	5.400	0.894	16.563
	MVAIPLA	5.000	9.000	7.200	1.643	22.822
ACCESION=1	1764					
KONEN TON-	Yariab}e	Minimo	Maximo	Media	Desv. Est.	C.V. (Z
	MUDDS	3.000	3.000	3.000	0.000	0.000
	lonsva)	11.190	11.700	11.480	9.26B	2.337
	M. REVAL	7.000	7.009	7.000	0.000	0.000
	NSE HVA!	5.000	7.000	6.000	0.707	11.785
	NVAIPLA	3.000	B.000	5,000	2.000	40.000

ANEXO Nº4

ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON	I=1 22 1					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
	NACOBOS	3.009	3.000	3.000	0.000	0.000
	LCMBVA	11.200	13.300	12.300	0.949	7.713
	NEGCYAI	6.000	9.000	7.600	1.140	15.002
	usenvaj	5.000	5.000	5.000	0.000	0.000
	avalet a	3.000	38.000	13,000	14.300	110.003
ACCESION	=1223					
	Variable	Minimp	Maximo	Hedia	Desv. Est.	C.v. (1)
	MINUDOS	3.000	3.000	3.000	0.000	0.000
	longva]	10.500	11.600	11.180	0.476	4.262
	nloeva]	6.000	7.000	6.200	0.447	7.213
	hsenva]	4.000	6.000	5.200	1.095	71.066
	SVA]Pla	2.000	6.000	3.800	1.483	39.033
ACCESION	=1234					
	Variable	Kinimo	Máxiao	Media	Desv. Est.	£.v. (2)
	HAUDOS	3.000	4.000	3.800	0.447	11.769
	L(D 16 YA)	8.100	9.890	8.860	0.680	7.680
	HLOCVA]	6.000	7.000	6.800	0.447	6.577
	MSEMVA)	3.000	6.000	4.B00	1.075	22.822
	nyajpla	2.000	3.000	2.400	0.548	22.822
ACCESION=1	1236		•			
	Variable	Mini n o	Máximo	Media	Desv. Est.	E.V. (1)
	MUDOS	0.000	4.000	3.200	1.789	55.902
	LONSYA]	9.500	10.500	9.940	0.439	4.420
MEDCYAI	4.000	7.000	6.400	0.548	8.5B¢	
	hsenval	6.000	8.000	6.600	0.894	13.552
	MYAIPLA	6.000	16.000	19.600	3.847	36.293
ACCESTON=	:1254					
	Variable	Minimo	Máxjep	Media	Desv. Est.	C.V. (1)
	HONDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	11.200	12.400	11.680	0.576	4.5.3
	ML OCYA]	7.000	8.000	7,400	0.548	7, 107
	xsenvaj	4.000	7.000	5.B00	1.304	22.480
	*Vajpla	4.000	17.000	7.600	5.683	74.780

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=12	er Pariable	Minimo	Raxino	Wadin	Desv. Est.	# 13 ±
,	141 14016	53 19 J # C	沙佛主义组织	Media	n624. £21.	c.v. (
į.	INUPOS	3.000	3.000	3.000	0.000	0.000
Ł	DREVAI	10.100	12.200	10.900	0.828	7.593
3	n DCVA)	5.000	7.000	6.400	0.894	13.975
,	SENVAJ	4.000	5,000	4,800	0.447	9.317
Ħ	ivajpla	3.000	4.000	3,800	0.447	11.769
ACCESION=126	.j					
	ariable	Minimo	Máxiso	Media	Desv. Est.	C.Y. (2
1	INUODS	3.000	3.000	3.000	0.000	0.000
i	DM6VA]	10.000	10.700	10.420	0.303	2.911
P	l gc va i	7.000	8.000	7.800	0.447	5.734
S.	SERVAJ	4.000	6.000	4.800	0.837	17.430
X	NAIPLA	3.000	14.000	7.400	4.037	54.558
ACCESION=127	0					
¥	ariable	Minimo	neixen	Media	Desv. Est.	C.V. (I
3	HUDOS	3.000	3.000	3.000	0.000	0.000
Ĺ	Dreval	9.800	11.200	10.340	0.623	6.024
	l DCVAI	7.000	8.000	7.400	0.548	7.402
	Senval	5.000	6.000	5.600	0.548	9.781
N	ya)fla	4.000	10.000	6,600	2.408	36.490
ACCESTON=127	2					
¥	ariable	Hinimo	deixie	ffedia	Desv. Est.	C.Y. (X
N	MUDOS	3.000	3.000	3,000	0.000	0.000
	DMSVAI	9.900	11.000	10.360	0.439	4.741
	l ocvai	5.000	6.000	5.200	0.447	8.600
	Senvai	4.000	7.000	5.600	1.140	20.360
X	Vaipla	3.000	6.000	5,200	1.304	25.074
ACCESION=120	7					
¥	ariable	Minimo	opiséh	Media	Desv. Est.	C.V. (1
	NUDOS	3.000	3.000	3.000	0.000	0.000
Ł	DNB VAI	10.000	10.900	10,420	0.455	4.366
	LDCVAI	5.000	7.000	003.3	0.894	13.552
	Senva)	5.000	5.000	5.000	0.000	0.000
N	VAIPLA	6.000	12.000	8.600	2,408	28,004

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=1	1291					
UGEFAID#-1	Variable	Minimo	Márimo	Media	Desv. Est.	E.V. (1)
					***************************************	2011
	HAUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	8.400	10.000	9.220	0.572	6.202
	SLOLYA)	6.000	7,000	6.400	0.548	8.558
	KSENVAI	5.000	7.000	8.200	0.837	13.495
	MVA)PLA	3.000	16.000	7.400	5.595	75.603
4[CES10#=1	1297					
	Variable	Niniao	Máximo	fiedia	Desv. Est.	c.v. (1)
	MAUDOS	4.000	4.000	4.000	0.000	0.000
	LOMBVAI	9.800	10.800	10.500	0.406	3.869
	NL DEVA1	6.000	7.000	6.600	0.548	8.299
	RSEMVA)	3.000	7.000	4.800	1.789	13.495
	MVAJFLA	5.000	15.000	7.400	3.782	40.229
ACCESION=17	295					
	Variable	Minima	Maximo	Regia	Desv. Est.	C.V. (2)
	WUROS	3.000	3.000	3.000	0.000	0.000
	LOW6VA]	10.700	10.700	10.370	0.192	1.853
	MICVAI	6.000	7.000	6.200	0.447	7.213
	MSENVAI	1.000	5.000	3,800	1.871	62.361
	HVAIPLA	1.000	4.000	2.600	1.140	43.853
ACCESION=1	1297					
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Variable	Hinimy	Máximo	Media	Desv. Est.	C.Y. (Z)
	NNUDOS	3.006	3.000	3.000	0.000	0.000
	LOMEVAL	9.100	11.400	10.300	0.995	9.660
	al ocvaj	6.000	7.000	6.400	0.548	8.558
	NSENYA]	5.000	7.000	6.000	0.707	11.785
	NYAJPLA	5.000	14,000	8.000	3.747	46.771
ACCESION=1	303					
	Variable	Minimo	Omikan	Media	Desv. Est.	C.V. (2)
	MANDOS	3.000	3.000	3.000	0.000	0.000
	l Dagas	10.600	12.200	11,400	0.644	5.651
	HLOCVAI	7.000	8.000	7.200	0,447	6.211
	MSERVA	4.000	6.000	5.000	1.000	20.000
	kya]Pla	5.000	14.000	8.000	3,464	43.301

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=1314					
Variab	le Minimo	Havino	Media	Desv. Est.	£.v. [2]
HALIDOS	4.000	4,000	4.000	0.000	0.000
LOXEVA	9.800	12.100	10.200	0.992	9.190
al icva	000.3	7,000	6.400	0.548	8,558
NSENVA	3.000	6.000	5.400	1.342	24.845
MYAIPL	A 4.000	14.009	8.700	3.899	47.545
ACCESTON=1727					
Yariabl	e Minimo	naximo	Media	Desv. Est.	C.y. (1)
HALPOS	3.000	3.000	3.000	0.000	0.000
LOWSVA	B.100	10.460	9.440	1,115	11.810
NL DEVA	I 5.000	7.000	5.800	0.837	14.425
nsetiya	1 5.000	6.000	5.400	0.548	10.143
NVAIPL	4 6.000	8.000	6.600	0.894	13.552
ACCESION=1335					
Variab	le Minimo	daise	Redia	Desv. Est.	C.V. (2)
WNUDGS	4,000	4.000	4.000	0.000	0.000
T (IMEAU)	10.500	12.100	11.320	0.712	6.290
ML DEVA	7.000	7.000	7.000	0.000	0.000
nse nva	5.000	7.000	6.200	0.837	13.495
NVAIPL	5.000	17,000	8.000	2.739	34.233
ACCESTON=1338					
Variab	ie Minimo	Máximo	Media	Desv. Est.	C.V. (2)
MINUDOS	4.000	4.000	4.000	0.000	0.000
LONSVA	8.400	11.500	10.080	1.326	13.150
ME DE VA	6.000	7.000	6.600	0.548	B.299
nsenya)	6.000	5.000	6.0 0 0	9.000	0.000
NYA]PL	2.000	7.000	5.000	2.646	52.915
ACCESION=1351					
Variab)	e Minimo	Máximo	Media	Desv. Est.	E.V. (X)
KNUDOS	3.000	3.000	3,000	0.000	0.000
LONGVA		11.000	10.240	0.709	6.926
MLOCVA		8.000	7.000	0.707	10,107
#SE NVA	4.000	6.000	4.800	0.837	17.430
MVAIPLA	3.000	15.600	8.600	5.320	61.858

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON	=1419					
	Variable	Miniag	Máxiao	Media	Desv. Est.	C.V. (7
	KNUDGS	3.000	3.000	3.000	0.000	0.000
	LOREVA)	7.600	11.500	10.380	0.666	6.419
	NLDCV41	6.000	8.000	6.800	0.919	13.514
	rsengal	3.000	7.000	5.000	1.333	26.667
	rvajfla	4.000	14.000	8.900	2.923	32.844
ACCESION	=1420					
	Variable	Hinimo	daisa	<i>H</i> edia	Desv. Est.	E.V. (1)
	MATERIAL	4.000	4.000	4.000	0.000	0.000
	LAVENAL	7.000	10.700	9.920	0.646	6.510
	MLDCVAI	6.000	7.000	6.200	0.447	7,213
	HSENVA)	4.000	6.000	5.000	0.707	14.142
	AVAIPLA	3.900	12.000	6.200	3.421	55.170
ACCESTOR:	=1519					
	Variable	Minimo	Maximp	Media	Desv. Est.	E.V. (1)
	KKUDDS	3.000	3.000	3.000	0.000	0.000
	Longval	8.600	11.500	10.340	1.060	10.245
	ML DCVAI	5.000	7.000	6.000	0.707	11,785
	nsebyaj	4,000	7.000	6.000	1.225	20.412
	XVAIPLA	12.000	18.000	14.600	2.302	15.768
ACCESTON:	:1524					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
	KAUDOS	3.000	3.000	3.000	0.000	0.000
	LOMEVAI	9.200	11.200	9.920	0.837	8.416
NLOCVA]	5.000	8.000	6.400	1.140	17.B15	
	HSENVA]	2.000	6.000	3.800	2.049	53,931
	nvaifla	1.000	4.000	2.200	1.304	59.265
CEESION=1	525					
	Variable	Miniao	Máximo	Media	Desv. Est.	C.V. (2)
	KNUDOS	3,000	3.000	3.000	0.000	0.000
	[BNBVA]	9.000	11.100	10.220	0.773	7.560
	MLCCVA)	5.000	7.000	5.800	0.837	14.425
	MSERVA]	4.000	6.000	5.000	1.000	20.000
	Kyaipla	4,000	10.000	7.000	2.449	34.993

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=1539						
Varia	ble	Hinima	Máximo	Media	Desy. Est.	C.V. (1)
RHUD	DS	3.000	3.000	3.000	0.000	0.000
LONG	VA]	8.900	10,100	9.580	0.482	5.028
M.OC	VAI	6.000	7.000	6.200	0.447	7.213
NSEM	VAI	4.090	7.000	5.400	1.140	21.114
RVA	PLA	8.000	9.000	8.800	0.447	5.082
ACCESTON=1544						
Vari	able	Hinimo	Maximo	Media	Desv. Est.	C.V. (2)
HNEID	05	3.000	3.000	3.000	0.000	0.000
LONG		7.000	9.800	9.360	0.351	3.747
ALOC		6.009	6.000	6.000	0.000	0.000
RSEM		3.000	5.000	4.000	1.000	25.000
NVAI	PLA	4.000	171000	7.800	5.404	69.278
ACCESION=1556						
Varia	able	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
HNUDE	15	3,000	3.000	3.000	0.000	9.000
LOXE	/AI	7.400	10.800	9.360	1.244	13.293
NECCY	ia:	6.000	6.000	6.000	9.000	0.000
ASEM	41	3.000	5.960	5.000	1.225	24.495
RYA;	14	3.000	4.000	3.000	1.225	46.625
ADCES3@h=1564						
varial	i P	Miniag	osikā ⁸	#edia	Desv. Est.	C.V. (2)
ANODO	S	3.000	3.000	3.000	0.000	0.000
LONSV	4}	F.200	10.000	9,480	0.733	7.730
AT DE A	Aj .	5.000	7,000	5.000	0.707	11.785
NSERV	4;	5.000	6.000	5.700	0.447	8.600
NVAIP	LA	1.000	3.000	1.600	0.894	55.902
CCESTON=1569						
Variab	le:	Minimo	Marino	Media	Desv. Est.	C.V. (X)
MKUDD	5	3.000	3.000	3.000	0.000	0.000
LONGV	Al	8.400	10.000	9.500	0.678	7.139
ML DCV	A]	5.000	7.000	6.200	0.837	13.495
RSEMV		5.000	7.000	6.200	0.837	13.495
KVAJP	LA	4.000	16.000	9.400	4.500	47.931 ACCESION=160

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=18	0 &					
*	Variable	Hiniao	Maximo	Media	Desy. Est.	c.v. 17
	KONUDUS	3.000	3.000	3.000	0.000	0.000
	LONGVOI	7.500	8.900	8.340	0.577	6.919
	NLDCVA]	5.000	7.000	6.000	0.707	11.785
	NSEMVA)	5.000	7,000	5.800	0.837	14.425
	nvalpla	4_000	18.000	11.600	6.580	56.726
ACCESION=18	31					
	Variable	Minimo	Maximo	Redia	Desr. Est.	C.V. (%)
	NNLIDOS	3.000	3.000	3.000	0.000	0.000
	Toxena!	10.000	12.400	11.060	0.961	8.687
	MLDEVAI	6.000	7.000	6.600	0.548	8.299
	MSE NVA 1	5.000	7.000	6.200	0.837	13.495
	nvajp <u>l</u> a	5.000	19.000	10.200	5.805	58.913
ACCESION=16	35					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
	HMUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVA)	7.800	12.600	10.820	1.511	13.948
	NLOCVAI	5.000	9.000	6.400	1.765	19.764
	HSEMVA)	2,000	6.000	5.100	1.197	23.475
	nva]Pla	3.000	10.000	6.50¢	2.369	36.443
ACCESION=16	38					
	Variable	Minjao	Máximó ,	Media	Desv. Est.	C.V. /21
	MUDOS	3,000	4.000	3,400	0.548	16.109
!	T (IMEAU)	19.100	10.600	10.360	0.230	2.222
	M. (ICVA)	7.000	7.000	7.000	0.000	0.000
	nsenva)	4.000	6.000	5.000	1.000	20.000
i	nya]Pla	3.000	8.000	5.800	1.924	33.164
ACCESION=16	41					
•	Variable	Niniso	Máximo	Media	Desv. Est.	E.V. (1)
	KNUDOS	3.000	3.000	3.000	0.000	0.000
	[CMEAN]	0.300	19.000	7.800	4.200	53.980
	nl devaj	6.000	7.000	6.400	0.549	8.558
	nservai	4.000	6.000	5.000	0.707	14,142
4	HVAJPLA	3.009	18.000	8,400	6.025	71.726

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCES 10%=164	15					
•	/ariable	Hinimo	Máximo	Media	Desv. Est.	C.V. 12
h	MUDOS	3.000	3.000	3.000	0.000	0.000
ı	CNSVA]	8.700	10.800	9.840	0.789	B.021
3	ILOCVA)	5.000	6.000	5.400	0.548	10.143
N	ISE NVA3	5.000	6.000	5.200	0.447	8.600
X	IVA]PLA	1.000	6.000	3.400	2.408	70.833
ACCESION=164	8					
	ariable	Minimo	Máximo	Media	Desv. Est.	C.V. (7
X	DAUDOS	3.000	3.000	3.000	0.000	0.000
i,	CNGVAI	9.400	11.700	11.040	1.014	9.184
N	r ocvaj	6.000	7.000	6.400	0.548	8.558
N	SENVAI	5.000	7.000	6.400	0.894	13.975
N	NA)PLA	4.000	7.000	5.400	1.342	24.845
ACCESION=165	i					
ν	ariable	Minimo	Máximo	Media	Desv. Est.	C.V. (7
N	MUDOS	3.000	3.000	3.000	0.000	0.000
ι	OMEVA]	9.000	12.600	11.040	1.383	12.528
H	LOCVA]	6.000	8.000	6.800	0.837	12.304
×	senya]	4.000	6.000	5.400	0.874	16.563
K	VAIPLA	6.000	15.000	9.400	3.507	37.310
ACCES (ON=165	2					
	ariable	Minimo	Māximo	Media	Desv. Est.	C.V. (2
×	MUDDS	3.000	3.000	3.000	0.000	0.000
L	DNSYAI	7.200	12.000	10.4B0	1.119	10.677
N	LDCVAI	5.000	B.000	6.400	1.140	17.815
神	senva]	4.000	6.000	4.800	1.095	22.822
N'	VA]PLA	2.000	6.000	3.800	1.789	47.075
ACCESION=165	4					
V	ariable	Kinimo	Máximo	Media	Desv. Est.	C.V. (7
¥	NUDOS	3.000	3.000	3.000	0.000	0.000
	DNEVAI	9.800	11.700	10.960	0.956	7.812
M	LOCVAI	5.000	7.000	6.600	0.894	13.552
W	SENVAJ	5.000	B.000	7.200	1.304	18.109
M	VAJPLA	3.000	9.000	6.200	2.588	41.749

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=1655					
Variable	Minjao	Máximo	Media	Desv. Est.	C.y. (3
MATORS	3.000	3.000	3.000	0.000	0.000
LONGVAI	9.600	10.700	10.340	0.451	4.357
MLDCVA)	6.000	7.000	6.400	0.548	8,558
MSEMVA)	4.000	7.000	5.800	1.304	22.480
NVAIPLA	10.000	15.000	13.600	2.074	15.247
ACCES10#=1657					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (7)
MUDDS	3.000	3.000	3.000	0.000	0.000
LONGVA]	9.100	11.100	10.120	0.844	8.338
MLOCVAI	6.000	6.000	6.000	0.000	0.000
NSE MYA]	5.000	7.000	5.600	0.894	15.972
NYAJPLA	3.000	10.000	6.000	2.550	42.492
ACCES10N=1658					
Variable	Hinimo	Máximo	Redia	Desv. Est.	C.V. (2)
MAIDOS	4.000	6.000	4.800	0.837	17.430
LENGVA	7.B00	9.700	8.940	0.808	9.039
MLDCVA1	5.000	6.000	5.B00	0.447	7.711
MSEMVA]	4.000	6.000	4.800	0.837	17.430
WVAIPLA	5.000	10.000	6.800	2.168	31.882
ACCESION=1659					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. 12
NNUDOS	3.000	3.000	3.000	0.000	0.000
L(M6VA)	7.800	10.100	B.840	0.896	10.137
MLOCVA	6.000	7.000	6.200	0.447	7.213
NSEMVA)	4.000	6.000	5.400	0.894	16.563
NVAJPLA	4.000	12.000	8.200	3.564	43,460
ACCESION=1662					
Variable	Minipo	Máximo	Media	Desv. Est.	C.V. (1)
MNUDOS	3.000	3.000	3.000	0.000	0.000
l (MBVA)	8.700	9.500	9.180	0.311	3 .39 3
ML DEVAJ	4.000	6.000	5.000	1.000	20.000
NSEMVAI	4.000	6.000	5.000	1.000	20.000
NVAIPLA	2.900	9.000	4,400	2.793	63.474

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=1664					
Varja	ble Hinimo	Máximo	Media	Desv. Est.	C.V. (1
MATTER	5 3.000	3.000	3.000	0.000	0.000
LONGV	9.300		10.040	1.031	10.269
NLOCV	A) 5.000	7.000	6.000	0.707	11.7B5
nsenvi	al 3.000	7.000	4.600	1.517	32.969
HVA]P	LA 2.000	12,000	7.800	3.701	47.453
ACCESION=1669					
Variab	le Minimo	Máximo	Media	Desv. Est.	C.V. (1)
KNUPO:	3.000	3.000	3.000	0.000	0.000
L DNSV/	8.600	11.200	9.640	1.004	10,415
AL DCV/	5.000	6.000	5.800	0.447	7.711
nsenv/	5.000	7.000	5.800	0.837	14.425
NVAIPL	A 7.000	19.000	10.400	4.879	46.909
ACCESION=1672					
Variab)	e Miniso	Māximo	Media	Desv. Est.	E.V. (%)
NNUDOS	4,000	5.000	4.400	0.548	12.448
LDMGVA	9.800	11.200	10.380	0.512	4,931
MEDEVA	6.000	8.000	6.800	0.837	12.304
NSERVA	1 4.000	7.000	5.600	1.342	23.958
NYAJPL	A 2.000	10.000	6.200	3.033	48.922
ACCESTON=1677					
Variabl	e Ninimo	Máximo	Media	Desv. Est.	C.V. (2)
HORUDOS	4.000	4.000	4.000	0.000	0.000
LONGVA		12.800	11.420	1.145	10.030
NLOCVA		8.000	6.B00	0.837	12,304
nsenya:		7.000	5.400	1.140	21.114
NVA]PLI	5.000	20.000	11.600	6.542	56.398
CCESION=1686					
Variable	e Ninimo	Máximo	Nedia	Desv. Est.	C.V. (2)
NAUDOS	3.000	3.000	3.000	0.000	0.000
l Ongva)	10.300	12.000	11.300	0.872	7.715
MLDCVA)		7.000	6.200	0.447	7.213
nsenva)		7.600	6.400	0.548	8.558
NVA1PLA	6.000	11-000	8.800	2.168	24.636

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=1689					
Varial	ble Minimo	Maximo	Media	Desv. Est.	C.V. (X
MUDDS	S 3.000	3.000	3.000	0.000	0.000
LONGY	N 8.200	9.400	8.660	0.527	6.088
NL OCV/	5.000	5.000	5.000	0.000	0.000
NSENVA	4.000	6.000	5.200	0.837	16.090
NVAIPL	A 6.000	11.000	8.800	2.168	24.636
ACCESTON=1718					
Variat	ole Minimo	Maximo	Media	Desv. Est.	C.V. (2)
MNUDOS	3,000	3.000	3.000	0.000	0.000
L DNGYA	3 6.700	9.700	8.090	0.838	10.369
ML DEVA	3 5.000	6.000	5.B00	0.447	7.711
NSERVA	1 5.000	6.000	5,400	0.548	10.143
MVA}PL	A 4.000	12.000	6.600	3.286	49.793
ACCESION=1720					
Variab	de Minimo	fiáximo	Media	Desv. Est.	C.V. (X)
NNUDDS	3.000	3.000	3.000	0.000	0.000
AVAKOJ	J 9.000	10.000	9.360	0.428	4.570
NLOCYA	3 6.000	7.000	6.200	0.447	7.213
nsenya	1.000	6.000	5,000	0.707	14,142
NVA]PL	A 3.000	8.000	5.600	2.510	44.821
ACCESION=1722					
Variable	Minimo	Māximo	Media	Desv. Est.	C.V. (X)
MADOS	*****	3.000	3.000	0.000	0.000
Longva		10.300	9.540	0.439	4.605
MLOCVA)	5.000	7.000	6.000	0.707	11.785
MSEMVA		7.000	5.800	0.837	14.425
NVA]PLI	5.000	13.000	9.000	3.391	37.680
CCESION=1724					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
MALIDOS	3.000	4.000	3.200	0.447	13.975
LONGVAI		12.200	11.640	0.518	4.447
M. OCVAJ		7.000	6.400	0.894	13.975
MSEHVA		7.000	5.800	1.095	18.887
AVAJPLA	3.000	6.000	4.800	1.095	22.822

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=1730					
Variable	Hinimo	Maximo	Media	Desv. Est.	C.V. 12
NAUDOS	3.000	3.000	3.000	0.000	0.00
i oneva)	7.800	9.700	9,060	0.744	8.20
ML DEVA1	6.000	7.000	6.400	0.548	8,55
nsenvaj	4.000	7.000	5.800	1.095	18.88
KVA1P1.A	3.000	13.000	8.600	3.647	42,40
ACCESION=1733					
Variable	Minimo	Maximo	Media	Desv. Est.	C.V. (Z)
WHUDOS	3.000	3.000	3.000	0.000	0.000
L(MGVA)	7.100	11.800	10.590	0.789	7.45
MLDCVA1	5.000	7.000	6.000	0.667	11.11
nsenvai	3.000	7.000	5.200	1.033	19.86
KVA)PLA	2.000	13,000	6.400	3.169	49.520
ACCESION=1739					
Variable	Minipo	Maxiso	Media	Desv. Est.	C.V. (%)
HMUDOS	3,000	5.000	3.600	0.B94	24.84
LDM6VA3	6.800	10.300	9.300	1.430	15.377
MLDCVA)	000.3	8.000	6.800	0.837	12.304
MSEMVA]	5.000	8.000	6.400	1.342	70.963
MVAIPLA	5.000	8.000	5.800	1.304	22.480
ACCESION=1740					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (X)
MOUDDS	3.000	3.000	3.000	0.000	0.000
LONGVA)	10.100	12,400	11.760	0.934	8.298
ML OCYA)	6.000	7.000	6.400	0.548	8.558
nsenval	4.000	5.000	4.400	0.548	12.448
MVAIPLA	2.000	7.000	5.000	1.871	37,417
ACCESION=1741					
Yariable	Minimo	Máximo	Media	Desv. Est.	C.V. (1)
MMUDOS	3.000	3.000	3.000	0.000	0.000
L DNEVA)	10.500	12.100	11.200	0.714	6.376
M. DCVAJ	6.000	7.000	6.600	0.548	8.299
NSENVAI	4.000	7.000	5.600	1.140	20.360
nvaipla	5.000	12.000	9.200	3.033	32.969

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=174		Winds-	18.8	سدائد مراجع	D F-4	pv 44 - 240
,	ariable	Minimo	Máximo	Media	Desv. Est.	C.Y. (7
,	INUDUS	3.000	3.000	3.000	0.000	0.000
L	OKEVAI	9.300	10.300	9.860	0.439	4,458
×	r ocyal	6.000	7.000	6.200	0,447	7.213
	isenva1	5.000	7.000	5,600	0.894	15.972
*	IVAJPLA	3.000	8.000	4.800	1.924	40.074
ACCES (ON=176	ı					
٧	lariable .	Minimo	Máxiao	Media	Desv. Est.	C.V. (1
1	INUDOS	3,000	3.000	3.000	0.000	0.000
L	(MSVA)	9.400	11.600	10.720	0.870	7.647
N	LOCYA]	6.000	7.000	6.800	0.447	6.577
	ISEMVA]	4.000	7.000	5.200	1.304	25.074
Ņ	IVAIPLA	5.000	9,000	6.600	1.817	27524
ACCESION=177	5					
Ÿ	ariable	Minimo	Máximo	Media	Desv. Est.	C.V. (7
H	MUDDS	3.000	3.000	3.000	0.000	0.000
i.	DN6VA]	9.300	10.600	10.020	0.572	5.707
N	LOCVA]	4.000	6.000	6.000	0.000	0.000
	SEMVA)	3.000	6.000	5.000	1.225	24.495
N	IVA]PLA	6.000	8.000	6.600	0.894	13.552
ACCESION=177	Ŷ					
y	ariable	Minimo	Máximo	Media	Desv. Est.	C.V. (7
N	MUDOS	3,000	5.000	4.000	1.054	26.352
_	(Avan	9.000	11.800	10.350	0.892	8.621
	LOCVAI	4.000	7.000	5.900	0.876	14,841
	SENVA]	4.000	6.000	4.700	0.823	17.516
N	YA)PLA	1.000	13.000	6.500	3.979	61.217
ACCESION=178						
Va	riable	Ninino	Maximo	nedia	Desv. Est.	C.V. (X)
	NUDOS	3.000	3.000	3.000	0.000	0.000
	(AVBVA)	9.800	12.200	10.960	1.493	13.619
	LOCVAI	5.000	7.000	6.400	0.894	13.975
	senva)	5.000	8.000	004.4	1.140	17.275
N	VAIPLA	6.000	11.000	9.600	2.074	24.112

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESSON=1782						
Yari:	apje	Minimo	Māximo	Redia	Desv. Est.	C.V. (2
ANG	DOS	4.000	4.000	4.000	0.000	0.00
1.00M	EVA]	8.500	10.500	9,400	0.892	9.48
AL DI	(YA)	4,000	5.000	4.600	0.548	11.90
NSET	TVA]	4,000	5.000	4.600	0.548	11.90
NYA]	IPLA	1.000	3.000	2.200	0.837	38.03
ACCESION=1784						
Vari	able	Minimo	Máximo	Media	Desv. Est,	E.V. (2
MACIE	ios	3.000	3.000	3,000	0.000	0.00
LOME	YA]	7.200	10.500	8.680	1.190	13.71
HIL DC	_	5.000	7.000	6.000	0.707	11.78
nsen		5.000	6.000	5.800	0.447	7.71
aya)	PLA	3.000	13.000	8.000	3.606	45.06
ACCESION=1785						
Varia	ble	Minino	Máximo	Media	Desv. Est.	C.V. (2
HINLID	05	3.000	3.000	3.000	0.000	0.00
£ 0706	VAI	11.500	12.700	12.260	0.483	3.93
MLOC	VA]	7.000	8.000	7.200	0.447	6.21
nsen		4.000	B.000	5.400	1.673	30.98
NVA]	Pla	4.000	8.000	5.200	1.643	31.59
ACCES10N=1786						
Vari	əble	Minimo	Máximo	Media	Desv. Est.	C.Y. ()
MANUE	OS	3.000	4.000	3,400	0.548	16.10
LONG	VA]	8.900	11.100	10.040	0.786	7.83(
WFOC.	VA]	5.000	7.000	6.700	0.837	13.49
MSEM		5.000	7.000	5.800	0.837	14,42
IEAVA	PLA	2.000	13.000	7.600	5.030	66.183
CCESION=1793						
Varia	b)e	Minimo	Máximo	Media	Desv. Est.	E.V. (2)
MUDI		3.000	3.000	3.000	0.000	0.000
F DWG		9.600	12,500	11.200	1.387	12.388
ML DES		5.000	7.000	6.200	0.837	13.49
NSEM		5.000	6.000	5.400	0.548	10.143
HEAVK	PLA	4.000	17.000	11.800	5.891	49.921

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=1796	Mark	M.A. . 1	w.at.	n •••	*
Variable	Minimo	Máxiao	Media	Desv. Est.	C.Y. (I)
MADOS	3.000	3.000	3.000	0.000	0.000
LONGVA	8.400	11.500	7.860	1.276	12.940
NLCCVA)	0.000	7.000	4,600	2.702	58.736
asenva)	5.000	7.000	6.000	0.707	11.785
MVA)PLA	6.000	16.000	12.200	5.215	42.749
ACCESION=1798					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (%)
NXUBOS	3,000	3.000	3.000	0.000	0.000
L ONGVA1	7.600	9.700	8.680	0.832	9.584
MLDEVA)	5.000	7.000	6.200	0.837	13,495
MSEMVA]	5.000	7.000	6.200	0.937	13,495
MVAIPLA	2.000	15.000	6.200	5.119	82.558
ACCESION=1800					
Variable	Minimo	Māxims	Media	Desv. Est.	C.V. (2)
NAMEDOS	3.000	3.000	3.000	0.000	0.000
LONGVAI	8.800	11.100	9.900	0.963	9.724
MLDCVA]	6.000	7.000	6.250	0.500	8.000
nsenva)	3.000	4.000	3,500	0.577	16.496
XVAIPLA	2.000	11.000	5.500	3.873	70.418
ACCESION=1802					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
MUDOS	3.000	3.000	3.000	0.000	0.000
LOWSVAI	9.100	10.500	9.900	0.515	5.200
MLOCVAI	6.000	7.000	<i>6.6</i> 00	0.548	8.299
nsenval	4.000	7.000	5.200	1.304	25.074
HVAJPLA	2.000	B_000	5.600	2.609	46.566
ACCESION=1905					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
HAUDOS	3.000	3.000	3,000	0.000	0.000
L CMGVA)	6.900	9.300	8.320	1.209	14.533
MLDCVAI	6.000	7.000	6.400	0.54B	8.558
nsenva)	5.000	6.000	5.800	0.447	7.711
nvajpi a	1.000	16.000	5.400	6.107	113.099

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=1823					
Variable	gmining	Māximo	Media	Desv. Est.	C.V. (Z
KNUDOS	5.000	5.000	5.000	0.000	0.00
LONSVAI	9.900	12,400	11.640	0.991	8.51
ML (ICVA)	6.000	8.000	7.600	0.894	11.76
MSERVAI	4.000	7.000	5.400	1.140	21.11
nvajpla	1.000	7.000	4.400	2.191	49.79
ACCESION=1840					
Variable	Minimo	Māximo	Media	Desv. Est.	C.V. (1
MMUDOS	3.000	3.000	3.000	0.000	0.00
L DRGVA)	8.500	12.900	10.680	1.663	15.57
MLOCVA)	5.000	6.000	5.800	0.447	7.71
NSEMVAI	4.000	7.000	5.000	1.225	24.49
KVA]P1 A	6.000	9.000	7.600	1.140	15,00
ACCESION=1844					
Variable	Misimo	Máximo	Media	Desv. Est.	C.V. (Z
NHUDDS	3.000	3.000	3.000	0.000	0.00
L (MGVA)	7.200	9.800	8.520	1.083	12.70
NL OCVA]	5.000	7.000	6.000	0.707	11.78
MSENVA]	4.000	6.000	4.600	0.894	19.44
NVAIPLA	4.000	7.000	5.200	1.304	25.07
ACCESION=1850					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (1)
MADDOS	3.000	3.000	3.000	0.000	0.000
Longvai	10.400	12.600	11.060	0.915	8.277
ML DCVA)	6.000	8.000	6.400	0.894	13.975
nsenva)	4.000	7.000	6.200	1.304	21.030
MVA1PL A	4.000	11.000	6.600	3.209	48.627
ACCESION=1852					
Variable	Minimo	Maximo	Nedia	Desv. Est.	C.V. (1)
MMUDOS	3.000	3.000	3.000	0.000	0.000
Longvaj	7.800	B.100	8.000	0.122	1.531
M. DCVA]	6.000	6.000	6.000	0.000	0.000
MSENVAI	3.000	6.000	4.800	1.304	27.163
NVAIPLA	5.000	13.000	8.200	3.114	37.981

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESIGM=1866 Varia	hlo	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
761 10	nic	111111111111111111111111111111111111111)1841#U	NEGIB	DEST. LSI.	U.V. (A)
HALL	DOS	3.000	3.000	3.000	0.000	0.000
1.000	6VA]	10.100	12.000	10.700	0.752	7.025
ML O	CVAI	6.000	8.000	6.800	1.095	16.109
KSE	NVA]	5.000	7.000	6.200	1.095	17.668
нуа	1PLA	4.000	11.000	8.200	3,114	37.981
ACCESION=1885						
	sídsi	Minimo	Māximo	Media	Desv. Est.	E.V. (7
AMOUNT	P OS	3.000	3.000	3.000	0.000	0.000
LOW	6VA)	9.300	11.100	10.020	0.701	7,000
MIL EN	CVA]	5.000	6.000	5.200	0.447	8.600
	eava]	4.000	6.000	5.000	0.707	14.142
NVA.	IPLA	7.000	16.000	12.800	2.588	20.222
ACCESION=1912						
Vari	ab) e	Miniso	Máximo	Media	Desv. Est.	E.V. (2)
MANU	DOS	3.000	3.000	3.000	0.000	0.000
LON		9.200	10.200	9.560	0.416	4.351
MLO		6.000	7.000	6,400	0.548	9.558
NSE		4.000	6.000	5,400	0.894	16.563
RYA)	iflr	3.000	10.000	5.000	2 .8 78	56.569
ACCESTQ#=1936						
Yari;	eldi.	Rining	Máximo	Media	Desv. Est.	C.V. (2)
IUM	/OS	3.000	3.000	3.000	0.000	0.000
I. OW		10.300	11.300	10.680	0.449	4.208
ALDE		6.000	7.000	6.600	0.548	8.299
MSEX		4.000	6.000	5.600	0.894	15.972
NVA]	PLA	11.000	22.000	16.800	4.970	29.583
NECES10N=1996						
Varia	ble	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
NNUE		3.000	3.000	3,000	0.000	0.000
T CIMB		9.800	11.000	10.480	0.432	4.176
ML OC		6.000	8.000	7.200	0.837	11.620
NSEN		6.000	8.000	6.600	0.894	13.552
AVAI	PLA	6.000	15.000	9.000	3.536	39.284

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON	=2005					
	Variable	Minimo	onixéM	Media	Desv. Est.	C.V. (2)
	HMUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVA	8.400	17.500	10.680	2.046	19.159
	MLOCVAI	5,000	7.000	6.200	0.837	13.495
	NSEHVA1	6.000	7.000	6,400	0.548	8.558
	NVAJPLA	5.000	17.000	10.800	4.374	40.040
ACCESION	=2023					
	Variable	Hinimo	Máximo	Media	Desv. Est.	C.V. (%)
	KNUDOS	3.000	4.000	3.500	0.527	15.058
	LONGVAI	8.500	11.000	10.380	0.846	8.147
	NLOCVAI	5.000	7.000	6.300	0.675	10.713
	MSEMVA]	5.000	8.000	5.900	1.033	17.807
	MVAIPLA	1.000	17.000	7.900	5.859	74.158
ACCESTON	=2025					
	Variable	Miniso	omikál	Hedia	Desv. Est.	E.V. (7)
	MMUDOS	3.000	3.000	3.000	0.000	0.200
	L(MSYA)	8.900	12.700	10.300	1.378	13.383
	M. DCVA1	5.000	7.000	6.167	0.753	12.207
	nsenva]	4.000	7.000	6.167	0.408	6.620
	NVAIPLA	3.000	9.000	6.167	2.137	34.654
ACCESION=:	203 0					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
	MINLEDES	4.000	4.000	4.000	0.000	0.000
	L DNGVA)	10.600	11.700	11.180	0.432	3.868
	MLGCVAI	5.000	7.000	6.000	1.000	16.667
MSEMVA	5.000	8.000	6.200	1.304	21.030	
	MYA]PLA	2.000	6.000	4.000	1.581	39.528
ACCESION	=2071					
	Varjable	Ninimo	Māximo	Media	Desv. Est.	C.V. (Z)
	NNUDES	3.000	3.000	3.000	0.000	0.000
	LONGVAI	7.500	10.900	7.840	1.345	13.665
	ME OCVAI	5.000	9.000	6.200	1.095	17.668
	nsenvaj	4.000	7,000	5.600	1.342	23.959
	NVA]PLA					

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=2086				<u>.</u> .	
Variable	Minimo	Maximo	Media	Desv. Est.	C.V. (I
HAUDOS	4,000	4.000	4.000	0.000	0.00
L (MGVA)	8.700	10.500	9.720	0.773	7.94
NLOCVA1	5.000	6.000	5,400	0.548	10.14
NSENVAI	4.000	6.000	4.800	1.095	22.82
AVA]PLA	2.000	6.090	3.600	1.673	46.48
ACCES10N=2136					
Variable	Hinimo	Máximo	Media	Desv. Est.	C.V. (7
ANUDOS	3.000	3.000	3.000	0.000	0.00
LONSVAI	11.200	13.200	11.880	0.792	6.66
ML DCVA]	6.000	7.000	5.400	0.548	8.55
HSENVA)	3,000	6.000	4.600	1.140	24.78
NVAIPLA	3.000	9.000	5.200	2.280	43.85
ACCESION=2253					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z
NRUDOS	3.000	3.000	3,000	0.000	0.00
LONGVA)	8.400	10.200	9.280	0.792	8.53
HLDCVA)	5.000	4.000	5.600	0.548	9.78
MSEMVAJ	2.000	5.000	4.200	1.304	31.04
nvaipla	2.000	16.000	6.600	b.229	94.37
ACCESION=2264					
Variable	Minimo	Máximo	Hedia	Desv. Est.	C.V. (Z)
MAUDOS	3.000	3.000	3,000	0.000	0.000
LONGVA)	9.800	11.100	10.380	0.550	5.294
MLDCVAI	5.000	6.000	5.400	0.548	10.143
MSENVAL	4.000	5.000	4.800	0.447	9.317
NVAIPLA	1.000	9.000	6.000	3.082	51.37(
ACCESION=2281					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
MONUDOS	4.000	4.000	4,000	0.000	0.000
L OMSVA]	8.500	7.200	6.870	0.270	3.049
AL OCVA)	4.000	6.000	5.200	0.837	16.090
NSENVA]	4,000	6.000	5.000	1.000	20.000
nvalpla	1.000	4,000	2.200	1.095	49,793

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=2315	P inima	Mauinn	Maraki a	Danie Tak	C 12 . (*)
Yariable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
MAUDOS	4.000	4.000	4.000	0.000	0.000
LONGVAI	19.500	12.300	11.420	0.719	6.29
NLO[VA]	6.000	7.000	6.200	0.447	7.21
nsenvaj	4,000	8.000	5.800	1.643	28.330
KVAJPLA	3.000	11.000	8.000	3.162	39.578
ACCESTON=2317					
Variable	Minimo	deixáB	Hedia	Desv. Est.	E.V. (2)
WYUDOS	3.000	3.000	3.000	0.000	0.00
l (Preva)	10.500	13.400	11.360	1.170	10.298
HL OCVA1	6.000	8.000	6.600	0.894	13.557
HSENVAI	5.000	6.000	5.600	0.548	9.78
MVA]P <u>i</u> A	4.000	11.000	6.800	3.033	44.60
AECEGIGN=2328					
Variable	Binimo	Máximo	Media	Desv. Est.	0.4. (1)
HMUDDS	3.000	3.000	3.000	0.000	0.000
Lorgval	9.600	11.700	10.660	0.902	8,458
MLDEVAI	5.000	7.000	6.800	0.447	6.577
MSEMVAI	4.000	6.000	5.200	1.095	21.066
NVAIPLA	2.000	9.000	5.800	3.114	53.698
ACCESION=2332					
Variable	Minimo	Máximo	Media	Desy, Est.	E.V. (X)
MAUDOS	4.000	4.000	4,000	0.000	0.000
Longval	10.200	11.700	10.700	0.648	6.057
ML DCVA3	9.000	7.000	6.800	0.447	6.577
KSEHVA)	4.000	6.000	5.400	0.894	16.563
NVAJPLA	2.000	14,000	B.200	4.382	53.436
ACCESTON=2334					
Variable	Minimo	Máxi#o	Media	Desv. Est.	E.V. (%)
HNUDDS	3.000	3.000	3.000	0.000	0.000
LONGVAI	7.800	11.300	9.660	1.424	14.742
XL DCVA]	7.000	8.000	7.600	0.548	7.207
asenvai	5.000	7.000	5.800	0.837	14,425
NVAIFLA	4.000	10,000	6.800	7.280	33.535

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=2337 Variable	Minimo	Māximo	Media	Desv. Est.	E.V. (Z
49139016	N191W0	пахаже	16019	pesv. ESt.	L.V. 12
NKUDOS	3.000	3.000	3.000	0.000	0.00
LONGVAI	10.000	12.500	11.120	1.003	9.02
ML DCVA1	5.000	7.000	6.000	0.707	11.78
rsenva]	4.000	6.000	5,200	0.837	16.09
KVAJPLA	2.000	12.000	6.600	3.975	60.22
ACCESION=2330					
Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z
MAUROS	3.000	3.000	3.000	0.000	0.00
LONGVAI	9.300	10.800	9.850	0.656	6.65
NL QCVA)	5.000	7.000	6.000	0.816	13.60
nsenva)	4.000	6.000	5.250	0.957	18.23
MVA}PLA	2.000	14.000	7.750	5.315	68.58
ACCESION=2343					
Variable	Mánino	Māximo	Media	Desv. Est.	C.V. (2
AMUDOS	3.000	3.000	3.000	0.000	0.00
L DNGVA]	8.900	11.200	9.800	0.967	9.86
KLOCVA)	6.000	6.000	6.000	0.000	0.00
nsenva)	3.000	6.000	4.200	1.304	31.04
NVA3PLA	2.000	6.000	4.200	1.643	39.12
ACCESION=2352					
Vəriable	Hinimo	Máximo	Media	Desv. Est.	C.V. (2)
MUDOS	3.000	4.000	3.700	0.483	13.055
L ORGVA)	8.500	12.600	10.320	1.255	17.161
nl ocva)	4.000	7.000	5.400	0.966	17.891
#SENVA]	4.000	6.000	5.000	0.943	18.856
AVA3PLA	3.000	13.000	6.200	3.190	51.450
ACCESION=2389					
Variable	disino	Máximo	Media	Desv. Est.	C.V. (Z)
NHUDOS	4.000	4.000	4.000	0.000	0.000
l Dngva)	8.500	10.000	9.240	0.559	6.055
NLOCVAI	6.000	7.000	6.600	0.548	8.299
nsenva]	6.000	B.000	7.200	0.837	11.620
AVAIPLA	8.000	17.000	11.000	3.742	34.015

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCES10N=2535					
Variable	finimo	Máximo	Media	Desv. Est.	E.V. (7
HAUDOS	3.000	3.000	3,000	0.000	0.00
L (MSVA)	10,000	12.300	11.440	0.929	0.12
MLCCVA)	6.000	6.000	6.000	0.000	0.00
MSEMVAJ	3.000	6.000	5.400	1.342	24.8
NVAIPLA	5,000	16.000	10,000	4.301	43.0
ACCESION=2596					
Variable	Nisimo	Máximo	Media	Desv. Est.	C.V. (
MUDOS	3.000	3.000	3,000	0.000	0.0
LONGVA)	7.100	8.800	8.040	0.635	7.8
MLDCVA)	5,000	7.000	6.000	0.707	11.7
hsenva)	2.000	5.000	3,600	1.140	31.6
#VA]PLA	3.000	10.000	7.000	2.646	37.7
ACCESTON=2676					
Variable	Hinimo	Máximo	Media	Desv. Est.	C.V. (
HNUUDS	3.000	3.000	3.000	0.000	0.0
l (MGVA)	9.000	12.700	11.660	1.563	13.4
MLDCYAI	4.000	6.000	5.600	0.894	15.9
rsenva]	4.000	6.000	5.600	0.894	15.9
MVAJPLA	3.000	15.000	6.800	4.970	73.0
ACCESION=2601					
Variable	Minimo	Máxiao	Media	Desv. Est.	E.V. (
MMUDOS	3.000	4.000	3.200	0.447	13.9
LONGVA1	8.500	11,400	10.120	1.121	11.0
MLOCYA]	6.000	7.000	6.200	0.447	7.2
NSENVA)	2.000	5.000	4.200	1.304	31.0
NVAIPLA	3.000	8.000	5.200	1.789	34.4
CCESIOM=2698 Variable	Minimo	Maximo	Hedia	Desy. Est.	C.V. (
MANUDOS	3.000	3.000	3.000	0.000	0.0
LONGVAI	9.000	12.100	10.560	1.133	10.7
ML(CCYA)	0.000	6.000	4.800	2.683	55.9
MSEMVA]	5.000	7.000	6.000	1.000	16.6
Myaipla	6.000	15.000	9.200	3,564	39.7

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON:		Minima	Maximo	Media	Desv. Est.	E.V. 17
	Variable	Minimo	naximo	ueoja	DPSV. EST.	F.Y. (/
	MINUDOS	4.000	5.000	4.200	0.447	10.64
	LOWGVAI	9.200	10.700	10.120	0.563	5.56
	ML DEVAL	7.000	8.000	7.200	0.447	6.2
	MSEMVAJ	3.000	6.000	4.600	1.140	24.78
	NVAIPLA	1.000	10.000	4.200	3.421	81.4
ACCESTON=	7715					
	Variable	Minimo	Maximo	Media	Desv. Est.	C.V. (
	MARIDOS	3.000	3.000	3.000	0.000	0.0
	LDMGVAI	8.500	10.700	9.660	0.971	10.0
	MLOCVAT	5.000	7.000	5.600	0.894	15.9
	MSEMVA	3.000	7.000	4.800	1.643	34.2
	XVAJPLA	4,000	10.000	7,000	2.236	31.9
ACCESTON=	2717					
	Vəriəble	Ninimo	Máxian	Media	Desv. Est.	C.V. (
	HOUDOS	3.000	3.000	3.000	0.000	0.0
	LONGVAI	9.700	10.300	9.760	0.445	4.5
	MLOCVAI	4.000	7.000	6.400	0.548	8.5
	MSENVAI	3.000	7.000	5.800	1.090	18.8
	MVAJPLA	4,000	9.000	5.800	2.049	35.3
ACCESTON=	2718					
	Variable	Minimo	Máximo	Media	Desv. Est.	E.V. ()
	WRIDOS	3.000	3.000	3.000	0.000	0.0
	LONSVA1	9.600	11.100	9.960	1.216	12.2
	MLDCYA)	4.000	6.000	5.200	0.837	16.0
	MSEMVA	3.000	6.000	4.600	1.140	24.7
	MYAJPLA	3.000	5.000	4.000	0.707	17-6
CCESION=	2719					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (
	HHUDOS	3.000	3.000	3.000	0.000	0.0
	T DHEAVI	9.000	11.200	9.900	0.819	8.2
	MLDCVA3	6.000	7.000	6.400	0.548	8.5
	HSEMVA)	5.000	6.000	5.400	0.548	10.14
	MY4]PLA	1.000	17.000	4.400	2.408	54.73

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=2720		aa + *	3h 3 !	M_ 47.	D P-2	ישנ בן יין
Vi	sriab} e	Minier	Máxiao	Media	Desv. Est.	C.V. (1)
10	RIBRS	3.000	3.000	3.000	0.000	9.000
U	DHGVA!	8.800	10.600	9.960	9.783	7.86
Ħ	LOCVAS	6.000	7.000	6.600	0.548	8.29
#	senva)	2.000	6.000	4.800	1.789	37.26
N.	VAJPLA	3.000	8.000	5.400	2.074	38.40
ACCESION=2721	1					
V	ariable	Minipo	Máximo	Media	Desv. Est.	C.V. (2)
N	WDOS	3.000	3.000	3.000	0.000	0.00
L	Meva]	9.900	12.400	11.250	1.240	11.01
M.	.DCVA1	6.000	7.000	6.250	0.500	8.00
45	ENVAI	5.000	8.000	6.000	3.414	23.570
av.	/AIPLA	2.000	5.000	3.7 50	1.258	33.55
ACCESTON=2722	<u> </u>					
Vər	eldsi	Minjao	Máximo	Media	Desv. Est.	C.Y. (1)
N	NUDOS	3.000	5.000	3.400	0.894	26.30
LE	MGYAJ	5.600	B.000	7.140	0.974	13.637
酰	DCVAI	4.000	5.000	4.600	0.548	11.90
NS	ENVA]	2.000	5.000	3.800	1.304	34.313
MV	ia)Pla	1.000	4.000	2.400	1.140	47.50
ACCESION=2724	,					
Var	iable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
40	10005	3.000	3.000	3.000	0.000	0.000
LØ	wgyaj	9.000	7.000	9.000	0.000	0.000
推	OCVA1	6.000	6.000	6.000	0.000	0.000
NS	Enval	6.000	7.000	6.500	0.707	10.879
#V	AIPLA	8.000	10.000	9.000	1.434	15.713
ACCESION=275	i o					
Va	riable	Minimo	Maximo	Media	Desv. Est.	C.V. (2)
MM	w pos	3.000	3.000	3.000	0.000	0.000
L0	MGVAJ	9.800	11.300	10.400	0.604	5,809
	OCVAJ	5,000	6.000	5.600	0.548	9.781
_	erva]	4.000	6.000	5.000	1.000	20.000
NV.	AIPLA	8.000	19.000	12.200	4.147	33.994

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCES (ON = 2764					
Variab	le Hinimo	Máximo	Media	Desv. Est.	C.V. (%)
MARLENO:	S. 3.000	3.000	3,000	0.000	0.000
LENSV		10.600	10.160	0.439	4.324
MLDCV	-	8.000	7.000	0.707	10.102
HSENVI		7.000	6.200	0.837	13.495
NVAJPI		8.000	6.200	1.483	23.923
ACCESION=2908					
Varia	ble Minimo	Máximo	Media	Desv. Est.	E.V. (2)
KORUDOS	S 3.000	3.000	3.000	0.000	0.000
LONGV	A) 10.700	17.000	11.540	0.602	5.221
HLDEV	A) 4.000	7.000	5,800	1.304	22,480
MSEHV	A) 3.000	5.000	4.200	0.837	19,920
NVAIP	LA 2.000	3.000	2.800	0.447	15.972
ACCESION=2918					
Varia	ble Minimo	Máximo	Media	Desv. Est.	C.V. (1)
MMUDQ	5 3.000	3.000	3.000	0.000	0.000
LON64	4) 10.300	17.000	11.500	0.755	6.565
MEDEV	A) 6.000	7.000	6.600	0.548	8.299
nse hv	A) 4.000	7.000	5.400	1.140	21.114
HVAIP	LA 5.000	14.000	8.000	3.536	44.394
ACCESION=2919					
Variab	le Minimo	Maximo	fiedia	Desv. Est.	C.V. (2)
NNUDO	3.000	3.000	3.000	0.000	0.000
LOASV	000.[[[#	13.300	12.000	0.906	7.546
MEDEV	A) 6.000	8.00 0	7.200	0.837	11.620
NSENV	A) 4.000	6.000	5.000	1.000	20.000
NVA1P!	LA 2.000	9.000	6.400	2.702	42.216
ACCESION=2920					
Varia	ble Minimo	Máximo	Media	Desv. Est.	C.V. (2)
MANUER		3.000	3.000	0.000	0.000
LONGV		11.900	10.460	0.757	7.103
ML DCV		7.000	6.200	0.447	7.213
nsenvi		7.000	6.000	1.000	16.667
NVA3P1	LA 7.000	16.000	11.400	3.578	31.383

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCES10#=2924						A 1- 1
Varia	eldi.	Minimo	Mäximo	Redia	Desv. Est.	C.V. (1
MHSS)OS	3.000	3.000	3.000	0.000	0.000
LONG		8.500	9.500	7.080	0.415	4.56
AL DC		6.000	7.000	6.200	0.447	7.21
MSEX		5.000	8.000	6.600	1.140	17.27
NVAJ		6.000	12.000	7.800	2.280	23.26
ACCESION=2927						
Varia	able	Hinimo	Máximo	Media	Desv. Est.	C.V. (Z
NNU	105	3.000	3.000	3.000	0.000	0.00
LEONE	SVA]	8.700	12.200	11.220	1.448	12.90
#L 0{	CVAI	6.000	7.000	6.800	0.447	6.57
MSER	IVA]	4.000	6.000	5.000	1.000	20.00
NVA	PLA	000.4	12.000	9.400	2.408	25.62
ACCESION=2928						
Varia	able	Minimo	Máximo	Media	Desv. Est.	C.V. (2
KIN	005	3.000	3.000	3.000	0.000	0.00
FORE	6VA]	8.400	10.300	9.500	0.809	8.51
ML DE	CVA3	6.000	7.000	6.200	0.447	7.21
MSEN	IVA]	4.000	6.000	5.200	1.095	21.06
AVA]	IPLA	6.00 0	15.000	9.890	3.701	37.76
ACCESION=2929						
Vari	iab)e	Minimo	Máximo	Media	Desv. Est.	C.V. (2
HAMI	Mis	3.000	3.000	3.000	0.000	0.00
FONE	5VA]	8.100	10.000	8.940	0.783	8.75
ML DC		6.000	7.000	6.400	0.548	8.55
MSET	NA)	4.000	6.000	5.200	0.837	16.09
WVA]	IPLA	4.000	11.000	7.400	3.050	41.21
ACCES (UN=2937						
Vari	able	Minimo	Máximo	Medja	Desv. Est.	C.V. (7
MAU		3.000	3.000	3.000	0.000	0.00
LONG		8.900	12.000	10.320	1.130	10.95
WL DO		6.000	8.000	7.000	0.707	10.10
MSET		4.000	6.000	5.600	0.894	15.97
NVA]	JPLA .	5.000	12.000	8.800	3.271	37.17

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=2939				_	
Variab	le Minimo	Máximo	Media	Desv. Est.	C.V. (I)
MMJDOS	3.000	3.000	3,000	0.000	0.000
LONGVA		12.600	11.083	0.966	8.71
ML OCVA		7.000	6.167	0.983	15.94
nse nya		6.000	4.333	1.366	31.529
MVAIPL	A 1.000	9.000	3.833	3.189	83.17
ACCESTON=2940					
Variabl	e Minimo	Máximo	Media	Desv. Est.	c.y. (1)
HALIDOS	3.000	3.000	3.000	0.000	0.000
LONGVA	7.200	7.800	7.500	0.255	3.39
MEDEVA		7.000	5.800	0.837	14.42
HSE MVA	2.000	6.000	3.800	1.643	43.24
HVAIPL	a 1,000	5.000	3.000	1.581	52.70
ACCESTON=2941					
Variabl	e Hinimo	Máximo	Media	Desv. Est.	E.V. (2)
KNUDOS	3.000	2,000	3.000	0.000	0.000
LONGVA	1 6.500	10.500	9.620	0.753	7.827
NLOCVA		6.000	6.000	0.00	0.000
NSERVA		7.000	5.200	1.304	25.07
NVAIPE	A 3.000	'9.000	5.200	2.490	47.88
ACCES10N=2942					
Vəriab	le Miniso	Háxiao	Media	Desv. Est.	C.V. (I)
MALIDOS	3.000	3.000	3.000	0.000	0.000
LONGVA		15.100	13.080	1.207	9.228
NI, DCYA	1 6.000	8.000	7.000	1.000	14,288
MSE TVA		7.000	5.400	1.517	28.085
MVA]PL	3 2.000	16.000	7.400	5,899	79.718
ACCESION=2943					
Yariab	le Minimo	Máximo	Nedia	Desv. Est.	C.V. (2)
MMUDOS		3.000	3.000	0.000	0.000
LONGVA		12.300	10.940	1.295	11.84
ML DCVA		7.000	6.400	0.894	13.97
MSEMVA		6.000	5.400	0.548	10.143
ava]Pl	4 6.000	12.000	8.800	2.775	31.533

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=294						 , ,
y,	ariable	dining	Maximo	Media	Desv. Est.	C.V. (1
K	ndos	3.000	3.000	3.000	0.000	0.00
ř.	DHEVA]	10.300	12.200	11.280	0.795	7.04
*	DCVAI	6,000	7.000	6.800	0.447	6.57
*	SENVAI	4.000	4.000	5.200	0.837	16.09
) (1)	PAJPLA	3.000	11.000	6.400	2.965	46.35
ACCESION=294	7					
V	ariable	Minjap	flàximo	Hedia	Desv. Est.	C.V. (7
N)	NUODS	4.000	4.000	4.000	0.000	0.00
	ongva]	8.900	11.300	9.740	9.976	10.02
	(BCVA)	6.000	7.000	6.200	0.447	7.21
	enva]	4.000	7.000	5.600	1.140	20.36
, and the second	VAIPLA	3.000	7.000	4.600	1.517	32.96
ACCES (ON=295)	3					
Var	riable	Hinimo	Haximo	Media	Desv. Est.	C.V. (X
***	RVDOS	3,000	3.000	3.000	0.000	0.00
Li	ongva]	11.300	13.000	12.100	0.682	5.63
	LDCVAI	6.000	8.000	6.800	0.837	17.30
	SEMVA)	4.000	9.000	6.600	1.949	29.53
N.	VA]PLA	3.000	7.000	5.600	1.517	27.08
ACCES LON=2954	ŀ					
Vi	eriable	Minimo	Máximo	Media	Desv. Est.	C.V. {Z
M	RIDOS	3.000	3,000	3.000	0.000	0.00
	mgya]	12.000	14.200	13.060	0.823	6.30
	DCVAI	6.000	7.000	6.600	0.548	8.29
***	ENVA	3.000	7.000	5,000	1.581	31.62
W.	/A3PLA	4.000	11.000	6.200	2.950	47.57
ACCES (OH=295)	5					
V;	eriable	Minimo	Máximo	Media	Desv. Est.	C.V. (X
	RUDOS	3.000	3.000	3,000	0.000	0.00
	MGVA]	9.800	10.600	10.300	0.332	3.22
	DCVAI	6,000	7.000	6.200	0.447	7.21
	ENVA1	5.000	7.000	6.200	0.837	13.49
N.	/AIPLA	4,000	11.000	7.600	3.507	46.14

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=3257						
Var	iable	Minima	Наизеп	Media	Desv. Est.	E.V. (2)
HN	HD05	3.000	3.000	3,000	0.000	0.000
L (1)	igva]	11.000	12.500	11.780	0.705	5.985
NL C	CVAI	7.000	8.000	7.400	0.548	7.402
NSE	MVA]	4,000	8.000	6.000	1.581	26.352
AVX	IJPLA	7.000	13.000	10.609	2.608	24.601
ACCES:10N=2961						
	eldei	Hinimo	Märjap	Media	Desv. Est.	C.V. (7)
KRIL	DDS	3.000	3.000	3.000	0.000	0.000
LON	SVA]	7.600	12.200	9.600	1.311	13.661
	CVAI	4.000	8.0(10	5.200	1.135	21.833
	nya]	2.000	6.000	5.200	1.229	23,640
RYA	IPL4	3,600	9.000	7.000	2.000	28.571
ACCESTON=2962						
Yar	iable	Minimo	Máxiao	Media	Desv. Est.	E.V. (1)
MAD	DOS	3.000	3.000	3.000	0.000	0.000
LON	eya]	9.200	11.700	10,400	1.065	10,244
	[VA]	6.000	7.000	6.400	0.548	8.558
	MVA]	4.000	6.000	5.200	1.095	21.066
NYA	JPLA	3.000	10.000	6.400	3,050	47.650
ACCES!ON=2963						
Vari	ab) e	Minien	Maximo	Media	Desv. Est.	C.V. (1)
AKU		3.000	3.000	3,000	9.000	0.000
	6VA]	9.600	11.100	10.560	0.631	5.974
4EBI	CVA)	6.000	7.000	6.200	(1,447	7.213
NSE	MYA]	3.000	6.000	4.800	1.643	34.233
#YA	ifla	3.000	8.000	5.700	2.168	41.691
ACCESION=2971						
Vari	able	Minimo	Máxieo	Media	Desv. Est.	C.V. (2)
KHU	005	3.000	3,000	3.000	0.000	0.000
L CM	SVA]	9.800	10.900	10.380	0.409	3.937
MERI	CVA)	4.000	7.000	5.200	1.304	25.074
	KYA]	4,000	7.000	5,200	1.304	25.074
KVA:	IPLA	3.000	12.000	7.000	3.536	50.508

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=2772					
Yariabie	geenik	Ивијар	Media	Desv. Est.	C.V. (Z
HNUDDS	3.000	4.000	3.260	0.447	13,97
Lorsvaj	10.700	12.260	11.170	0.769	6.91
MLDCVAI	6.000	B.000	6.800	0.837	12.30
rsenva)	3.000	5.000	4.200	1.304	31.04
NVAJPLA	3.009	5,000	3.200	0.837	22.01
ACCESION=2983					
Variable	Minimo	Máximo	Ħedia	Desv. Est.	C.V. (X
RHUDGS	3.000	7.000	3.000	0.000	0.00
LONGVAI	9.860	10.760	10,170	0.370	3.65
HE DEVAJ	6.000	7.000	6.600	0.548	8.29
NSERVAS	5.000	7,000	6,000	9.707	11.78
NVAIPLA	3.000	11.000	5.600	3,130	55.9(
ACCES10N=2784					
Variable	Minimo	Máximo Omikáh	Media	Desv. Est.	C.V. (7
MUDOS	3.000	3.000	3.000	0.000	0.00
l (M6VA)	9.300	8.900	8.640	0.261	3.01
MLOCVAI	6.000	7.000	6.400	0.548	8.5
NSENVAI	5.000	7.000	5.B00	0.837	14.42
HYAJFLA	7,000	13.000	9.600	3.130	32.60
4CCES10N=29 85					
Variab)	e Kinimo	Maximo	Media	Desv. Est.	C.V. (3
MXUDOS	3.000	3.000	3.000	0.000	0.00
LONGVAJ	10.600	12.000	11.400	0.583	5.11
al oca)	6.000	7.000	6.400	0.548	8 55
rsenva)	5.090	7.000	5.600	0.894	15.97
KVAJPLA	6.000	22.000	17.200	5.933	48.63
OCCES10N=2986					
Variab)	e Kinimo	Másimo	Media	Desv. Est.	C.V. ()
MAUDOS	3.000	3.000	3,000	0.000	0.00
l Cheva I	7.500	13.100	11.200	1.758	15.65
nl DCYA)	6.000	7.000	6.800	0.447	6.57
nsenvaj	2.900	6,000	4.600	1.517	32.96
HVA]FLA	4.000	17.000	8.200	3.271	39.89

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=2789						
٧a	riable	Kinina	Máximo	Media	Desv. Est.	E.V. (%)
nr	unos	3.000	3.000	3.000	0.000	0.000
i 0	MBVA)	6.900	9.900	9.020	1.207	13.382
AL)	DCV4)	4.000	7.000	5.800	1.095	10.887
#Si	[nva]	5.000	6.000	5.600	0.548	9.781
#V	AJPLA	7.000	15.000	9.800	5.020	51.224
ACCESION=2993						
۷a	riable	Minimo	darino	Media	Nesy. Est.	C.V. (%)
KK	udos	3.000	3.000	3,000	0.000	0.000
LD	K e va]	6.500	9.200	8.060	1.152	14.298
	OCYA]	5.000	6.000	5.800	0.447	7.711
	EMVAI	4.000	6.000	5.400	0.894	16.563
es.	4]PLA	2.000	7.000	4.000	1.871	46,771
ACCESSON=2997						
Var.	eldei	Minimo	Máximo	Media	Desv. Est.	E.V. (%)
	UDDS	3,000	3.000	3.000	0.000	0.000
	KEYA]	7.800	10.000	9.340	0.904	9.683
	BCY4)	4,000	6.000	5.600	0.894	15.972
	EAVAI	3.000	6.000	4.600	1.342	29.166
KV:	Alpla	4,000	9.000	000.4	1.871	31.189
ACCESSON=2978						
¥ar;	iable	Minimo	Máximo	Media	Desv. Est.	E.V. (2)
MM	uros	3.000	3.000	3.000	0.000	0.000
LO	ngva]	9.000	9.700	9.400	0.265	2.815
NE	DCVA]	5.000	6.000	5.800	0.447	7.711
	EWA]	4.000	7.000	5.200	1.304	25.074
NY/	AIPLA	4,000	11.000	6.600	2.702	40.937
ACCESION=3002						
Var:	iable	Minimo	Maximo	H edia	Desv. Est.	£.V. (E)
	UDUS	3.000	3.000	3.000	0.000	0.000
	MGVA]	9.300	11.200	10.060	0.876	8.711
	DCVAI	6.000	7.000	6.800	0.447	6.577
	EMVA]	4.000	7.000	6.209	1.304	21.030
舞Vi	aipla	7.000	18.000	11.000	4.796	43.598

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=3005					
Variable	Minimo	គឺតំនាំ១០	Media	Desy. Est.	C.V. (X)
SAUDOS	3,000	3.000	3.000	0.000	0.000
Longval	9.300	10.500	10.120	0.545	5.385
KLDEVAT	5.000	6.000	5.600	0.548	9.781
KSENVAJ	5.000	6.000	5.800	0,447	7.711
NVA]PLA	6.0(6)	17.000	11.400	5.030	44.122
ACCESTOR=3006					
Variable	Minimp	Máximo	Media	Desv. Est.	C.V. (Z)
NNUDOS	3.000	3.000	3.000	0.000	0.000
Lorsvaj	10.000	10.800	10,400	0.339	3.261
MLEICVA]	6.000	7.000	6.600	0.548	8.299
nsenva)	5.000	6.000	5.800	0.447	7.711
nvalfla	8,000	15.000	10.600	2.966	27.986
ACCESTON=3012					
Variable	កីរ៉ាវាត់ខ	Máximo	Media	Desv. Est.	E.V. (7)
nalidos	3.000	3.000	3.000	0.000	0.000
Lorgya)	9.600	10.700	10.140	0.503	4.960
MLDCVA	6.000	7.000	6.200	0.447	7.213
nserval	5.000	6.000	5.400	0.548	10.143
HVAIPLA	6.000	24.000	11.209	7.396	66.035
AECESION=3014					
Variable	ธีเธi#o	Máximo	Media	Desv. Est.	C.V. (%)
KRUDOS	3.000	3.000	3.000	0.000	0.000
LOMSVAI	7.800	10.600	9.480	1.110	11.708
nl DCYA)	4,000	6.000	5.000	0.707	14.142
RSERVAI	4.000	6.000	5.000	0.707	14,142
nvajpla	2.000	8.000	6.200	2.490	40.161
4CCES10N=3023					
Variable	Minimo	qæčkšM	Nedsa	Pesv. Est.	C.V. (I)
MHUDOS	3.000	3.000	3,000	0.000	9,000
l (Ingva)	8.500	11.100	9.640	1.057	10.968
MEDEVAI	5.000	7.000	6.000	0.707	11.785
MSENVA)	4.000	6.000	4.800	0.837	17,430
NVAJPLA	4,000	14.000	9.000	3.742	41.574

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTO	JN=3027					
	'ariable					
		Minimo	Maximo	Media	Desv. Est.	C.V. (2)
	6NUDOS	3.000	3.000	3.000	0.000	0.000
	lorgva]	9.000	10.200	9.720	0.460	4.737
	al olya)	5.000	7.000	5.600	9.874	15.972
	rsenva]	4.000	6.000	5,400	0.894	16.563
	AJGLAVR	5.000	7. 0 00	5.600	0.894	15.972
ACCESTO	N=3029					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
	NNUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	9.100	10.000	9.580	0.402	4.201
	ML DCVA I	5.000	6.000	5.400	0.548	10.143
	asenva]	5.000	7.000	5.800	0.837	14.425
	KVAIPLA	2.000	10.000	5.400	2.881	53.351
ACCES10	¥=3037					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (%)
	MNUDDS	3.000	3.000	3.000	0.000	0,000
	LONGVAI	31.700	13.100	12,340	0.518	4,195
	RLOCYA)	7.000	8.000	7.600	0.548	7.207
	rsenvaj	4.000	6.000	5.000	1.000	20.000
	nyajpla	3.000	10.000	7.200	7.683	37.268
ACCESION	= \$039					
	Variable	Hinimo	Махімо	Hedia	Desv. Est.	C.V. (X)
	NNUDOS	3.000	3.000	3.000	0.000	0.000
	Lorsyal	10.009	17.000	10.680	0.766	7-174
	ML (ICVA)	4.000	7.000	6.400	0.548	8.008
	asenva1	4.000	6.000	5.000	0.707	14.142
	NYAJPLA	3.000	8.000	5.000	1.871	37.417
ACCESTON:	=3043					
	Variable	Minimo	Máxian	Media	Desy. Est.	C.V. (2)
	MMUDOS	3.009	3.000	3.000	0.000	0.000
	1 Onsval	9.300	11.000	9.940	0.733	7.379
	al Devai	6.000	7.000	6.200	0.447	7.213
	#SEMVA)	5.000	7.000	6.200	0.837	13.495
	nvajpla	3.000	10.000	6.800	2.775	40.807

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESIOM=3045 Vaciable	Miniso	Máximo	Media	Desv. Est.	C.V (7)
ASC 181116.	(Q'01#b	MESTRO	115019	REDAY COL	D. 7. (A)
KWUD65	3.000	3.000	3.000	0.000	0.000
LORGVAI	11.400	11.800	11.670	0.164	1,414
ML OLVAI	5.000	9.000	6.800	0.837	12.304
RSEMVA)	4.000	6.000	5.400	0.894	16.563
NVAIFLA	4,000	27.000	9.400	7,403	78.752
ACCES10N=3058					
Variable	Kinina	Máximo	nedia	Desv. Est.	C.V. (X.
NAUDOS	3.000	4.000	3,250	0.500	15.38
LOMEYAI	1.600	10.300	7.850	4.180	
MLOEVA)	7,000	7.000	7.000		0.000
nsemvaj	4.000	7.000	5.250		23.96
NVAIPLA	5.00 0	11.000	7.750	2.754	35.53
ACCES16N=3060					
Variable	Minimo	Махіяз	Kedia	Desv. Est.	C.V. (Z)
MUDOS	3.000		3,000	0.000	9.000
LONGVAI	9.800	10.900	10.440		
ML DCVA1	6.000	7.009	6.200		7.213
nserva)	4,000	6.000	4.800		22.82
hyajfla	4.000	8.000	£.200	1.4B3	23.92
ACCES16N=3073					
Variable	គឺរំបារ់តជ	Maximo	Beola	Desv. Est.	C.V. (7)
HMUDOS	4.000	4.000	4,000	0.000	0.000
[AV3H0]	8.500	10.760	9.560	0.862	9.228
#LOCYA]	7.000	8.000	7.400	0.548	7.402
HSEMVA)	6.096	7.000	6.600	0.548	8.299
RVAJPLA	7,000	15.000	9.400	5.320	56.593
ACCES10H=3074					
Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (2)
RNUDDS	3.000	3.000	3.000	0.000	0.000
Lonevaj	8.400	004.7	8.960	0.545	6.137
HE OEVA)	6.000	7,000	6.600	0.548	8.299
HSEMPA)	4,000	7,000	6.700	1.304	21.03(
AVA]PLA	8.900	16.000	11.200	3.271	29.200

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=3087 Varial	t]e Kini#o	Máximo	Hedia	Desv. Est.	C.V. (%)
AMIL	3.904	3.000	3.000	0.000	0.000
LONG	/A] 9.700		10.260	0.494	3.935
MLDE	/A) 5.000	7.000	6.600	0.894	13.552
相连則	/A) 4.00(·	5.200	0.837	15.09(
NVAI	7.000) 17.000	11.600	3.975	34.267
ACCESTON=3089					
Varia	able dinimo	Máximo	Media	Desv. Est.	C.V. (%)
HEUDI	os 3.000		3,000	0.000	0.000
Long	7.000 FAN	9.900	9.400	0.387	4.12
MEDE			6.200	0.447	7.233
nsen	=		5.200	0.837	16.099
#VA]	7.000	000.41 0	10.600	3.362	31.717
ACCESION=3090					
Varj:	oble Minimo	Máxiao	Media	Desy. Est.	(.V. (X)
NNEITH			3.000	0.000	0.000
LONG			10.000	1.093	10.933
HE OC!			5.600	0.894	15.977
NSEM			5.800	1.394	22.48
#7A] {	1A 5.000	14.000	7,400	3,715	50.200
ACCESION=3091					
Vərjak	de dining	Máximo	Media	Desv. Est.	C.V. (%)
#MUDE	is 3.000	3.000	3.000	0.000	0.000
LONG	/A) 8.100	10.100	9.240	0.773	8.369
ML DCA	141 6.000	7.000	6.200	0.447	7.213
MSEM	/A) 2.000	6.000	4.200	1.643	39.123
NVA]}	'LA 5.000) 12.000	8.800	2.775	31.533
ACCESION=3093					
Variabl	e finiso	páxieo	Media	Desv. Est.	E.V. (%)
MALIDE			3.000	0.000	0.000
TONE			10.740	0.856	8.351
MF DC/			6.800	0.447	6.577
KSEM			4,800	0.837	17.430
MYAJF	14 6.000) 15.000	9.600	3.782	39.391

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=3075		 ,		н	B E 3	
Vari	9D}&	ក់ខ្មែរភាព	Máxiao	Media	Desv. Est.	C.Y. (Z)
ANUI	05	3.000	3.000	3.000	0.000	9.000
1 DXP.	VA]	9.500	12.500	10.960	1.284	11.717
MEDE	[AV	6.000	7,000	6.400	0.54B	B. 558
NSEN	VA)	5.000	7.000	6.000	0.707	11.78
icave	F1 A	3.900	26.000	11.000	8.860	80.546
ACCESION=3097						
Varia	ble	Miniso	Máximo	Media	Desv. Est.	£.V. (7)
MADID	65	3.000	3.000	3.000	0.000	0.000
T COKE.	ya i	9.000	7.900	9.500	0.406	4.278
MLCC.	VA)	5.000	7.000	6.400	0.548	8.559
MSEM		5.000	o.000	5.200	₩.447	8.60
(WA)	FLA	4,000	5.0%	5.700	0.837	16.099
#31E51@N=3102						
varis	oje	Minimo	Maxieo	Kedia	Desy. Est.	C.V. (%)
KAU	(5	3.000	3.000	3.000	0.000	0.000
1045	V4]	9.500	12.000	10.620	9.593	8,406
ALDE!	Vři	6.00	7,000	5.700	0,447	7.213
43EM		4.000	5.000	5.060	Đ.797	14.143
(VA)	F <u>i</u> à	2,000	13.000	4.490	4.037	61.172
ACCES16A=J165						
Vari	ati)e	Hinimo	Máxjeo	Kedia	Desv. Est.	C.V. (1)
hnio	05	4.000	4.000	4.000	0.000	0.009
10%	/k)	7.500	17.009	9,960	1,750	19.580
MEDE	(A)	5.000	6.000	5.800	0.447	7.711
risen:		4,000	6.000	4,600	(1.894	17,444
i (Aya	. F. 9	1.000	11.000	5,400	4.722	87,450
ACCESION=3106						
Varial	hie	Minimo	deikād	nedia	Desv. Est.	C.V. (X)
KALLDI		3.009	3.000	3.000	0.000	0.000
t 0%61		8.609	9.500	8.660	0.548	6.563
HL DC1		5.000	6.000	5,400	0.548	10.143
MSEM		4.000	6.000	5.000	1.000	20.000
NVA1	PLA .	7.600	10.000	7.890	1.304	16.716

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

V	eldsi	Hini∎e	fláxjap	Media	Desv. Est.	C.V. (2
TBJ	10015	542111.E6	ithrimb	nevio	hepa, Epr.	6,7, 15
树	VD05	3.000	3.000	3.000	0.000	0.00
ŁŒ	ngva)	8.500	10.500	9.800	0.762	7.77.
ML	DCVA]	5.000	6.000	5,600	0.548	9.78
NS	EMIA)	4,000	6.000	5.000	1.000	20.00
hy.	a]fla	7,000	20 .00 0	11.400	5.030	44.12
ACCESION=3109						
Va	riable	គីរ៉ូតែរ៉ូតែភ្	Baxiap	Media	Desv. Est.	C.V. (7
朝	ume.	3.090	3.000	3,000	0.000	0.00
f Q	ngva]	10.100	12,400	10.980	9.85B	7.81
批	OC.VA)	6.000	7,000	6,400	9.548	8.55
45 5	envaj	3.900	7.000	5,400	1.817	33.64
NV.	aifla	5.000	9.000	6.B00	1.799	26.39
400ES10N=3112						
Va	riable	finiso	Maxieo	Media	Desv. Est.	C.V. (Z
KA	UPOS	3.000	3.000	3.000	0.000	0.00
FO	NEVA)	8.300	10.700	9,120	1.071	11.19
NL:	OCVAI	4.000	6.000	5.400	0.894	16.56
NE	EMVAI	5.0(n)	7.000	5.409	0.894	15.97
6年	AIPLA	7.000	10.000	8.800	1.304	14.81
ACCESION=3124						
Var:	iable	Hinimo	Махамо	Hedia	Nesv. Est.	C.V. (1)
K4	UDOS	3.060	3.000	3.000	0.000	0.000
F 0/	N6VA)	7.500	9.000	8.166	0.652	B. 048
机	H VA ?	4,000	5.000	4,400	0.548	12.44
MSI	[MVA]	3.000	5.000	3,600	0.894	24.845
WAY	ajpi a	3.000	11.000	6.700	3,271	52.759
ACCES1 0N =3129						
Var:	iable	Minimo	Máximo	Media	Bes≠. Est.	C.V. (X)
KK	UDOS	3.000	3.000	3.000	0.000	0.000
10	MGVA]	9.800	11.700	19,420	0.550	5.274
M.	D[VA]	6.000	7.609	6.200	0.447	7.213
MSA	HVA	4,000	6.000	5.200	0.837	16.096
操 状	AJFLA:	2.000	9.000	4.R00	3.423	71.261

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

	Variable	Minimo	Máximo	5edia	Desv. Est.	£.V. (2)
	MANUEDS	3.000	3.000	3.000	0.000	0.000
	[SMEAN]	9.700	41.399	10.020	0.783	7.83
	ML ()CYA]	5.000	7.000	5.600	0,894	15.972
	HSEMVA)	4,000	6.000	4.600	0.894	19.444
	nvajpla	2.000	8.600	4.200	2.693	63.886
ACCESTON=3	139					
	Variable	Minimo	Máxion	Media	Desv. Est.	C.V. (2)
	MNUDOS	3.000	3.000	3.600	0.000	0.00
	LORGVAI	7,900	12.200	10.800	1.193	10.95
	GLOCYAI	5.000	7.000	6.200	0.837	13.49
	nsenva)	5.000	6.000	5.400	0.548	10.14
	SVAIPLA	5.000	14.0(n)	10.000	3.674	36.74
4CCESION=3	145					
	Variable	Minimo	Máxima	र्मर ने 3 व	Desv. Est.	C.V. (2)
	KHUDOS	3.000	3.000	3,000	0.000	0.000
	COMEVA)	7.500	11.300	10.470	0.669	6.416
	WLOCVA)	5.000	7.000	6.400	9.874	13.87
	nservaj	5.000	7.000	6,000	1.000	16.66
	avaipla	2.000	12,000	7.600	3.647	47.98
400 e 518 n =3	152					
	Variable	Hinimo	Máximo	Media	desv. Est.	C.V. (1)
	ANCOOS	3.000	3.000	3.000	0.000	0.000
	LONGVA)	8.100	8.600	8,420	0.205	2.434
	ALCCVA	6.090	4.000	6.000	0.000	0.000
	NSENYA)	4.000	4.000	5.000	0.707	14.147
	nvaipla	3.000	8.060	5.400	1.949	36.099
ACCESION=3	153					
	Variable	Minian	Máximo	Media	Desv. Est.	E.V. (1)
	HMUDOS	3.000	3.000	3.000	0.000	0.000
	Lonsval	10.000	12.100	11.260	0.853	7.578
	MEDEVAL	5.000	6.000	5.800	0.447	7.71
	MSEMPA)	2.000	6.000	4.600	1.673	36.377
	NVAIPLA	3.000	11.000	000.3	3.162	52.70

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=315	ŧ					
Ÿ	ariable	Minimo	Māxi#o	Media	Desv. Est.	C.V. (Z
A	Karas	3,000	3,000	3.000	0.000	0.00
L	DHGVAJ	8.700	11.000	9.780	0.909	9.29
*	LOCVAI	5.000	7.000	6.400	0.894	13.97
Ħ	SEMA)	3,060	6.000	4,000	1.225	30.61
Ħ	valp <u>l</u> a	2.000	5.000	3.800	1.304	34.31
ACCESION=316	<u>.</u>					
y	ariable	Minimo	Máximo	Media	Desv. Est.	E.V. (2
精	MUDOS	4.000	4.000	4,000	0.000	0.00
L	DN6VA)	10.100	10.900	10.500	0.316	3.01
% I	LOCVAI	2.000	6.000	4.000	1.581	39.52
n:	serva)	2.000	6.000	4.000	1.581	37.52
\$\$1	vaipla	3.000	9.000	5.200	7.683	51.60
ACCESION=31	74					
y,	ariable	Miniso	Máximo	Media	Desv. Est.	E.Y. (I
N	VUDOS	3.000	3.000	3.000	0.000	9.00
LI	ongva)	9.600	10.800	10.280	0.545	5.30
料	.OCVA)	6.000	7.000	6,600	0.548	8.79
	Enval	4,000	7.000	5.200	1.304	25.07
K)	/AIPLA	2.000	11.000	6. 200	3.421	55.176
ACCES10N=3211						
¥a	riable	Miniso	Máxima	Hedia	Desv. Est.	E.V. (%)
**	WDDS	3.900	3.000	3.000	9.009	0.000
LO	MENAI	9,700	11.100	10.160	1.074	10.076
挺	DEVAI	6.000	7.000	6.209	0,447	7.713
	ENVA)	5.009	7.000	5.800	0.837	14.42
科学	aifla	4,000	17.099	9.600	4.722	49.190
ACCESION=3213						
Var	iable	Kinimo	Maximo	Media	llesv. Est.	C.V. (Z)
	1005	3.000	3.000	3,000	0.000	0.000
	ngva]	9.800	13.100	10.840	1.379	12.726
	(CVA)	7.000	7.000	7,000	0.000	0.000
	Envai	4.000	7.000	5.600	1.140	20.340
NV.	aipla	3.000	7.000	5.200	1.483	28.524

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON						
	Variable	Minizo	Máximo	Media	Desv. Est.	C.V. (%)
	MIDIG	3.000	3.000	3.000	0.000	0.000
	LONGVAL	8.400	11.100	9.560	1.157	12.100
	MLDEVAL	5.000	7.900	6.200	0.837	13,495
	NSEHVA)	5.000	7,000	5.000	0.707	11,785
	NYAJPŁA	1.000	8.000	4.600	2.074	45.079
ACCESION:	=3216					
	Variable	Binimo	Máximo	Media	Desv. Est.	C.V. (2)
	MINIDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	9.000	12.000	10.270	1.182	11.565
	MLDEVA	8.000	7.000	6.700	0.447	7.213
	NSEMVA	5.000	5.000	5.000	0.000	0.000
	MVA]FLA	4.000	20.000	7.500	6.870	88.080
ACCESTON:	=3219					
	Yariable	Minimo	Máximo	Media	Desv. Est.	E.V. (1)
	NNUDDS	3.000	3.000	3.000	0.000	0.000
	l (MGVA)	8.400	11.100	9,480	1.011	10.664
	ML OCVAI	6.000	7.000	6.200	0.447	7.213
	nsenva]	4.000	6.000	5.200	0.837	16.090
	#VAIPLA	4,000	11.000	7.600	3.050	40.128
accesion=	3222					
	Variable	Name of	#āximo	Media	Desv. Est.	C.V. (2)
	MANUDUS	3.000	3,000	3.090	0.000	0.000
	LDNEVA]	9.300	1 10.700	10.000	0.422	4.216
	ML DCVA1	6.000	7.000	6.200	0.427	6.801
	HSENVA	4,000	6,000	5.000	0.943	18.856
	nvajp <u>l</u> a	2.000	17.000	7.000	4.243	60.609
ACCESION=	3726					
	Variable	Hivano	Maximo	Media	Desv. Est.	C.V. (I)
	NNUDOS	3.000	3.000	3.000	0.000	0.000
	Longva)	10.000	13.300	11.400	1.573	13,800
	nloevaj	6.000	8,000	6.800	0.837	12.304
	nsenval	5.000	6.000	5.460	0.548	10.143
	avaipla	5.000	13.000	9.600	2.966	30.901

ANEXO Nº4 ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESION=32	32					
	Variable	Hinino	Máximo	Hedía	Desv. Est.	C.V. (Z)
	NAUDOS	3.000	3.000	3.000	0.000	0.000
	LONGVAI	9.100	11.500	10,420	0.876	8.405
	ULOCVA)	5.000	7.000	6.200	0.837	13.495
	NSENVAI	5.000	7.000	6.400	0.874	13.975
	rvajp <u>l</u> a	4.000	70.000	10.600	6.387	60.259
ACCESION=32	33					
	Yariable	Minimo	Maximo	Media	Desv. Est.	E.V. (2)
:	SOURK	3.000	3.000	3.000	0.000	0.000
!	Longva)	1.400	11.800	9.440	4.502	47.691
!	41.00(44)	6.000	7.000	6.600	0.548	8.299
	nsenvaj	5.000	7.000	5.800	0.837	14,425
1	NVAIPLA	7.000	12.000	9.800	1.924	19.678
ACCESION=32	3 0					
,	Variable	Hinimo	Máximo	Media	Desv. Est.	£.v. (1)
!	MHUDOS	3.000	3.000	3.000	0.000	0.000
ĺ	LOXEVAI	9.400	11.100	10.000	0.696	6.964
i	ML DCVA]	6.000	7.000	6.800	0.447	6.577
i	ksenva)	4.000	7.000	5.800	1.304	22.480
1	kvaipla	4.000	8.000	5.200	1.643	31.599
4CCES10#=321	50					
ţ	Variable	Minimo	Máximo	Media	Desv. Est.	£.v. (2)
	MUDOS	3.000	3,000	3,000	0.000	0.000
í	.Ox6vaI	9.300	111.700	10.560	0.871	8.245
ļ	aloeva)	5.000	7,000	6.000	0.707	11.785
	(SENVA)	4,000	6.000	4.600	0.894	19.444
ŧ	iyaipla	5.000	12.000	7.B00	2.775	35.575
GCCESION=321	15					
*	ariable	Hinimp	Maximo	Media	Desv. Est.	£.v. (1)
ı	MUDOS	3.000	3.000	3.000	0.000	0.000
ì	ONSV4)	9,000	7.000	9.000	0.000	0.000
1	r DEVAI	6.000	6.900	6.000	0.000	0.000
	(SERVA)	5.000	7,000	6.500	0.707	10.879
,	iyaipla	8.090	10.000	9,000	1,414	15.713

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON=32	79					
	Variable	Minimo	Háxino	Media	Desv. Est.	C.V. (7)
	MMUDDS	3.000	3.000	3.000	0.000	0.000
	Longvai	8.700	9.600	9.140	0.546	5.973
	ML DCVA1	5.000	6.000	5.600	0.54R	9.781
	hsenva]	3.000	6.000	4,600	1.342	29.166
	MYA]PLA	4,009	6.000	5.000	1.000	20.000
ACCESION=32	93					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (Z)
	MMEIDOS	3.000	3.000	3.000	0.000	0.000
	L (MSVA)	9.800	11.000	10.280	0.460	4.479
	NLOCVA)	6.900	7.000	6.600	0.548	8.299
	nsenva)	6.000	7.000	6.600	0.548	8.299
	MVAJPLA	6.000	13.000	10.700	3.033	29.737
ACCESION=32	94					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (2)
	MMUDOS	3.000	3.000	3.000	0.000	0.000
	LOWGYA]	10.000	11.600	10.680	0.614	5.749
	HLDCYA)	7.000	8.000	7.200	0.447	6.211
	nsenya)	4,000	7,000	5.800	1.095	18.897
	HVA]PLA	6.000	13,000	8.000	2.915	36.443
ACCESTON=32	95					
•	Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (X)
i	NNUDOS	3.000	3.000	3.000	0.000	0.000
1	LONGVAI	11.000	12.600	11.940	9.B14	6.819
	NLDCVA)	7.000	8.000	7.200	0,447	6.211
	nsenva)	6.000	8.000	7.000	0.707	10.102
i	NVAIPLA	6.000	12.000	8.600	2.191	25.475
ACCESION=32	76					
•	Variable	Minimo	Máximo	Media	Desv. Est.	E.V. (1)
	NONLIDOS	3.000	3.000	3.000	0.000	0.000
	L CWGVA)	9.100	10.500	9.800	0.620	6.331
	NLOCVA)	6.000	7.000	6.400	0.54B	8.558
	NSENVA)	4.000	6.000	5.200	0.837	16.090
i	NVA3PLA	3.000	6.000	4.000	1.225	30.619

ANEXO Nº4
ESTADISTICOS BASICOS DESCRIPTIVOS DE CARACTERES CAUNTITATIVOS

ACCESTON:	=3300					
	Variable	Minimo	Máximo	Media	Desv. Est.	£.v. (1)
	MNUBOS	4.000	4.000	4.000	0.000	0.000
	longva]	9.000	11.100	9.780	0.898	9.185
	MLOCVA1	6.000	7,000	6.800	0.447	6.577
	KSENVAI	3.000	6.000	4.600	1.140	24.786
	MVA3PLA	3,000	B.000	4.800	2.490	51.875
VARJEDADI)= CJA 93					
	Variable	Minimo	Máxámo	Media	Desv. Est.	C.V. (I)
	HNUDOS	7.000	4.000	3.060	0.245	8.659
	LONSVAI	1.900	13.300	10.863	1.244	11.454
	#LDCVA]	4.000	10.000	6.560	0.959	14.615
	MSEMVA]	2.000	8.000	5.487	1.163	21.194
	NVAIPLA	1.000	000.81	6.660	3.014	45.257
VARIEDAD:	: 00R 364					
	Variable	Minimo	Máximo	Media	Desv. Est.	C.V. (X)
	ANUROS	2.000	6.000	3.255	0.628	19.283
	Longvaj	8.400	13.000	11.056	0.812	7.342
	MLDCVA]	5.000	8.000	6.291	0.642	10.199
	MSEMVA]	3.000	8.000	5.812	0.961	16.538
	KVAJPLA	1.000	22.000	6.376	3.784	59.346

ANEXO № 5
ENSAYO REALIZADO EN LA ESTACION EXPERIMENTAL "LA COMPAÑIA"
EN EPOCA DE PRIMERA (Junio-Agosto, 1995).

Acce	Mustia	Manchal	Mancha2	Acce	Mustia	Manchal	Mancha2
232	7~	7	8	626	7	6	6
240	ī	6	6	630	8	4	4
241	2	4	4	636	2	6	ઇ
246	8	4	ě	837	7	6	7
248	ī	7	8	942	9	4	5
250	3	5	5	1214	8	6	7
251	8	5	5	1221	8	6	6
256	2	6	ž	1223	5	7	8
257	4	6	6	1234	ž	5	6
259	3	6	6	1236	4	3	6
261	4	4	6	1254	1	4	4
263	6	5	5	1257	6	6	7
264	5	5	5	1262	7	4	6
267	8	6	ž	1270	3	,	6
269	7	4	5	1272	2		
273	1	6				5	6
275 275	9		6 7	1287	7	4	5
276	4	6		1291	4	6	7
279		4	5	1292	3	6	6
	3	6	6	1295	8	4	5
285	6	5	6	1297	8	4	6
289	2	5	6	1305	7	5	6
294	5	5	8	1314	4	4	5
278	6	6	6	1327	8	5	7
306	4	5	6	1335	4	6	6
313	7	7	8	1338	4	6	6
316	7	5	6	1351	7	3	6
317	2	5	5	1417	1	6	7
318	2	7	8	1420	4	6	6
319	7	6	6	1517	1	4	5
320	3	4	6	1524	8	4	4
322	5	4	5	1525	7	5	\$
326	4	4	4	1539	8	5	5
327	4	5	5	1544	9	5	5
328	6	6	6	1556	4	5	7
330	1	8	8	1564	2	6	6
332	2	6	6	1569	4	6	7
422	9	6	6	1606	ż	4	4
445	8	5	7	1631	4	6	6
508	4	5	5	1635	8	7	8
510	5	6	6	1638	4	6	7
512	6	4	6	1641	1	7	8
520	8	6	6	1645	7	6	7
522	6	6	6	1648	ś	4	
523	7	5	5	1651	6	4	6 4

ANEXO N 5 ENSAYO REALIZADO EN LA ESTACION EXPERIMENTAL "LA COMPASIA" EN EPOCA DE PRIMERA (Junio-Agosto, 1995).

Acce	Mustia	Manchal	Mancha2	Acce	Mustia	Manchal_	Mancha2
1652	ž.	5	5	1912	*	7	Ö
1654	6 8	5	6	1712	1 5	7 2	8 3
1655	9	ć	6	1996	ÿ ÿ		ა გ
1657	8	7	8	2005	2	6 5	5
1658	4	6	8	2023	4	3	4
1659	5	6	6	2025	7	4	5
1662	ž	6	6	2030	6	4	4
1664	9	ó	6	2071	1	a	5.
1669	Ĺ	5	6	2086	9	7	ě
1672	5	5	4	2136	9	5	5
1677	ž	3	3	2253	8	5	6
1686	5	7	7	2264	5	ã	4
1687	ž	5	é	2281	2	4	5
1718	4	4	ş	2315	7	\$	6
1720	3	6	6	2317	1	6	6
1722	3	6	6	2328	2	5	6
1724	3	5	6	2332	4	4	4
1730	4	5	5	2334	ì	7	ż
1733	4	4	5	2337	2	5	6
1739	4	5	7	2338	6	4	4
1740	3	5	6	2343	4	4	7
1741	4	5	6	2352	2	5	6
1747	3	6	Ġ	2369	1	4	4
1761	4	4	4	2535	6	5	5
1775	7	4	5	2596	4	5	5
1779	2	6	6	2676	6	5	6
1781	3	6	6	2681	8	6	6
1782	5	4	. 7	2678	7	7	6
1784	4	6	6	2704	1	6	6
1785	9	4	5	2716	4	6	6
1786	2	-6	6	2717	8	5	7
1793	9	4	7	2718	6	6	7
1796	7	6	7	2719	7	4	5
1798	7	5	5	2720	6	4	4
1800	5	క	6	2721	7	4	4
1802	7	5	6	2722	1	5	8
1605	7	7	7	2724	7	4	6
1823	7	4	5	2725	3	5	6
1840	9	5	8	2750	4	5	6
1844	1	7	7	2764	4	6	6
1850	7	6	6	2908	7	4	5
1852	5	3	5	2918	6	6	6
1866	8	5	6	2919	5	5	6
1885	5	5	6	2920	2	3	5

ANEXO N 5 ENSAYO REALIZADO EN LA ESTACION EXPERIMENTAL "LA COMPAZIA" EN EPOCA DE PRIMERA (Junio-Agosto, 1995).

Acce	Mustia	Manchal	Hancha2	Acce	Mustia	Manchal	Mancha
2924	7 143 C14 3	5	5	3079	2	6	6
2927	7	7	7	3087	7	6	6
2928	7	6	6	3089	2	6	6
2929	2	5	8	3090	6	4	6
2937	8	6	7	3091	2	5	6
2939	5	5	7	3073	6	4	6
2940	2	5	7	3095	8	5	6
2941	9	6	5.	3097	1	7	7
2942	1	7	7	3102	2	4	6
2943	8	6	6	3105	G	6	6
2944	5	5	6	3106	9	6	7
2947	9	6	6	3107	1	6	6
2953	6	7	7	3109	7	6	6
2954	7	6	7	3112	8	6	6
2955	7	3	5	3124	4	6	7
2957	1	4	8	3129	6	Ş	5
2961	4	7	9	3131	3	3	3
2962	6	5	6	3138	2	7	7
2963	5	5	5	3145	7	5	5
2971	7	5	6	3152	4	5	6
2972	1	4	7	3153	3	4	5
2983	8	5	5	3154	1	6	6
2984	8	4	4 .	3166	3	6	6
2985	6	6	6	3194	8	6	6
2986	5	5	6	3211	6	6	6
2989	5	6	6	3213	7	6	6
2995	2	7	7	3215	2	5	5
2997	3	6	6	3216	8	6	6
2998	1	7	7	3219	2	6	6
3002	9	7	7	3222	5	5	6
3005	3	4	4	3226	8	5	5
3006	2	4	5	3232	8	6	6
3012	8	5	5	3233	9	4	6
3014	8	5	7	3238	1	7	8
3025	6	7	6	3250	6	4	4
3027	4	3	4	3279	1	5	7
3029	1	5	6	3293	6	4	6
3037	8	4	5	3294	8	5	7
3039	i	5	5	3295	5	4	4
3043	7	5	6	3298	9	4	5
3045	8	6	7	3300	5	6	8
3058	1	4	5	3329	4	4	4
3060	4	6	6	3333	8	6	6
3073	7	5	5				

ANEXO Nº 6 DATOS DE PASAPORTE DE LAS ACCESIONES ESTUDIADAS

Acce	Lugar de colecta	Municipio	Departamento	Lat.	Long.	Alt.
232	La concepcion	Altagracia	Rivas	11.55	85.57	45
240	San marcos	San Marcos	Darazo	11.91	86.20	455
241	Diriamba	Diriamba	Carazo	11.90	86.20	450
245	Masaya	Masaya	Masaya	11.97	86.10	235
248	Cerro Mombacho	Granada	Granada	11.93	85.95	65
250	Chacalapa	Relen	Rivas	11.51	85.89	90
251	cos Cerros	Rivas	Kivas	11.45	85.84	96
256	Habillo	Řívas	Rivas	11.53	85.84	40
257	Los cerros	Rivas	Rivas	11.53	85.84	96
259	Gueorada Honda	Masaya	Masaya	11.97	86.10	235
261	Rancho Grande	Matagalpa	Matagalpa	13.26	85.55	500
263	La paz Carazo	La paz de Oriente	Carazo	11.86	86.15	430
264	Palo Quemado	Diriomo	Granada	11.79	86.04	250
267	Dulce nombre	San Marcos	Carazo	11.84	86.19	455
269	Pikin Buerrero	Masatepe	Masaya	13.10	86.35	
273	Palo Guemado	Diriomo	Granada	11.45	B5.84	
275	Carazo	Esteli	Esteli	13.10	86.35	56
276	Carazo	Esteli	Esteli	11.93	85.75	839
279	Los Cerros	Rivas	Rivas		86.35	65
285	Esteli	Esteli	Esteli	13.10	85.84	839
289	Granada	Granada	Granada	11.93	86.35	65
294						
298	La Concepcion	Altagracia	Rivas	11.55	B5.57	45
306	Los Cerros	Rivas	Rivas	11.45	85.82	80
313	Palo Guemado	Diriomo	Granada	11.88	86.09	333
316	La Concepcion	Altagracia	Rivas	11.55	85.57	45
317	Los Cerros	Rivas	Rivas	11.45	85.84	96
318	La Concepcion	Altagracia	Rivas	11.55	85.57	45
317	Cerro Mombacho	Granada .	Branada	11.78	86.09	333
320	La Concepcion	Altagracıa	Rivas	11.55	85.57	45
322	Sta. Teresa	Jinotepe	Carazo	11.85	86.20	569
326	Sta. Teresa	Jinotepe	Carazo	11.85	85.20	569
327	San Ramon	Masaya	Masaya	11.97	86.10	235
32B	La Paloma	Masaya	Masaya	11.97	86.10	43
330	las Pilas	Rivas	Rivas	11.49	B5.83	43
332	Coludo	Rivas	Rivas	11.49	85.83	62
422	El Espavel	San Carlos	Rio San Juan	11.49	85.83	62
445	Namanji					
508	Pueblo Nuevo	Pueblo Nuevo	Esteli	13.06	86.21	839
510	Pueblo Nuevo	Pueblo Nuevo	Esteli	13.06	86.21	839
512	Esquipulas -	Esquipulas	Matagalpa	12.67	85.50	839
520	Pantasma	Pantasma	Jinotega	13.08	86.00	1000
522	Limay	La Concordia	Jinotega	13.18	86.19	1100
523	Carazo	La Concordia	Jinotega	11.84	86.19	56
626	Guarwao	Diriomo	Granada	11.87	86,05	65
630	Guarumo	Diriono	Granada	11.87	86.05	65

ANEXO NO 6 DATOS DE PASAPORTE DE LAS ACCESIONES ESTUDIADAS

636	El Eslabon	Nandaime	Granada	11.87	86.13	65
837	LI 1310001	MOUNDING	O) BNSSG	11.0)	00110	90
942	La Concescion	Маѕауа	Masaya	11.85	86.15	455
1214	Buena Vista	El Castillo	Rio San Juan	11.55		45
1221	Buena Vista	El Castillo	Rio San Juan	11.55		45
1223	Buena Vista	El Castillo	Rio San Juan	11.01		45
1223	San Jose		Jinotega	13.05		1000
1234	San Jose	Jinotega Jinotega	Jinotega	13.05	85.93	1000
1254	El Balope	La Dalia	Matagalpa	13.22		1000
1257	El Galope	La Dalia	Matagaipa	13.22		1000
1262	Rancho Grande	Matagalpa	Matagalpa	13.26		500
1270	Bo.Carlos Aguero	Matagalpa	Matagalpa	13.26		500
1272	Bo.Carlos Aquero	Matagalpa	Matagalpa	13.24		500
1287	El Tuma	May May	Matagalpa	13.10		500
1291	Jinotega	Jinot eg a	Jinotega	13.10		500
1292	Jinotega	Jinotega	Jinotega	13.90	86.00	800
1295	vinorego	priocedo	0111055 90	10110	00100	500
1297	Las Łomas	Jinotega	Jinotega	13,13	86.03	700
1305	COS FOMES	vinociga	ornorego	10110	50100	700
1314	La Bolsa	Yali	Jinotega	13.15	86.03	900
1327	Los Baladeros	Yali	Jinotega	13.15		900
1335	Quebrada Grande	Yali	Jinotega	13.15		900
1338	30501 808 O: 6110C	,411	otubicha	10.10	00.00	700
1351	CIAT					
1419	Jinotega	Jinotega	Jinotega	13.90	B6.00	800
1420	Jinotega	Jinotega	Jinotega	13.90	86.00	800
1519	vanotago	*********	vanetegs	10170	55.00	200
1524	Urbaite	Cardenas	Rivas	11.31	85.51	35
1525	Urbaite	Cardenas	Rivas	11.31	85.51	35
1539	Tola	Tola	Rivas	11.52		43
1544	Nancimi	Tola	Rivas	11.52	85.58	43
1556	Coyol	Tola	Rivas	11.52	B5.58	43
1564	CIAT	Colombia				
1569	Rio Grande	Rivas	Rivas	11.42	85.85	242
1606	El Coyol	Tola	Rivas	11.39	85.97	50
1531	Japon					
1635	ClAT(Colombia)					
1638	ClaT(Colombia)					
1641	CIAT(Colombia)					
1645	CIAT(Colombia)					
1648	ClAT(Colombia)					
1651	CIAT(Colombia)					
1652	CIAT(Colombia)					
1654	CIAT(Colombia)					
1655	CIAT(Colombia)					
1557	CIAT(Colombia)					
1658	CIAT(Colombia)					
1659	Clát (Colombia)					

ANEXO Nº 6 DATOS DE PASAPORTE DE LAS ACCESIONES ESTUDIADAS

2253						
2264						
2281	Coop.B.G.Laviana	El Viejo	Dhinandega	12.66		50
2315	La Habana	La Trinidad	Esteli	13.01	86.2B	615
2317	la Hapana	La Trinidae	Esteli	13.01	85.25	815
2328						
2332						
2334	Subtlava	Esteli	Esteli	13,66	86.30	920
2337	Liand Redondo	Estell	Esteli	13.06	86.30	920
2338	Clano Redonoo	Estell	Esteli	13,12	68.30	920
2343	Espinal	Estell	Esteli	13.12	6B.30	920
1352	la Sirena	Esteli	Esteli	13.12	68.30	920
236₹	Ei Gicaro	Esteli	Esteli	13.38	86.46	500
2535	Tonela	Tonaia	Chinandega	13.22	96.87	920
2576	La Sabaneta	La oaz Centro	Leon	12.32	86.67	500
2676	Petaqualia	El Sauce	Leon	12.96	86.50	260
2681	Corre Vientos	El Sauce	Leon	12.96	B6.50	360
2598	Sa. Lorenzo	Achuapa	Leon	12.50	86.88	50
2704	Los llanos	San Juan Limay	Esteli	13.32	86.59	1100
2716	Samula	San Ramon		12,94	85.84	525
2717	Samulali	San Ragon	Matagalpa	12.94	86.84	525
2718	Samula	San Kampo	Matagalpa	12.94	85.94	525
2719	Piedra Larga	San Dionisio	Matagalpa		ar a r	FAC
.2720	Cascuila	Esquipulas	Matagalpa	12.69	85.78	500
2721	Cascuila	Esquipulas	Matagalpa	12.67	85.50	340
2722	Cascuila	Esquipulas	Matagalpa	12.67	85.50	340
2724	Guadalupe	San Ramon	Matagalpa	12.94	85.84	525
2725	Guadalupe	San Ra≢on	Matagalpa	12.94	85.84	525
2750	San Francisco	Samalote	Juigalpa	12.13	85.40	117
2764						
2708	P1	S. Jose de los rem	D	12.60	85.79	65
2918	El cerro El Cerro	S. Jose de los rem	Boaco Boaco	12.60	85.79	65 65
2919 2920	EL Cerro	S. Jose de los rem	Boaco Boaco	12.60	85.79	65
2924	CT CALLO	a. 9056 86 165 FER	DORLO	11.00	89.77	0.0
2724 2927	Las Laias	San Lucia	Boaco	12.53	85.74	650
2928	Las Lajas Las Lajas	San Lucia	Boaco	12.53	85.74	650
2929	las Lajas	San Lucia	Boaco	12.53		650
2937	El Ocotal	San Lucia	Boaco	12.53	85.74	050
2939	EI ULULAI	3811 EGE18	BORLO	14:00	03177	
2940	Yule	Boaco	Воасо	12.55	85.68	500
2941	Tule	Воасо	Boaco	12.55	85.68	500
2942	Tule	Boaco	Boaco	12.55	85.68	500
2943	Tule	Boaco	Boato	12.55	85.6B	500
2944	Monbachito	Boaco	Boaco	12.39	85.50	550
2947	Rio Grande	Cancapa	Boaco	12.37	85.50	550
2953	Collanchique	Савоара	Roaco	12.38	85.51	550
2755 2954	Collanchique	Самоара	Baaco	12.38	85.51	550
#/PT	AATTOMCHING	Admidsha	20050	12,00	00101	500

Collanchique	Camoapa .	Воасо	12.38	85.51	550
Las Pencas	Camoapa	Roaco	12.39	85.50	550
Roaco Viejo	Boaca	Beaco	12.45	85.53	500
Boaco Viejo	Роасо	Воасо	12.45	85.53	500
Boaco Viejo	Boaco	воасо	12.45	85.5 3	500
Tierra Azul	Boaco	Boaco	12.69	85.87	450
Tierra Azul	Воасо	Воасо	12.69	85.85	450
El Chilamate	Masaya	Masaya	11.97	86.10	235
El Chilamate	Masaya	Masaya	11.97	86.05	100
El Chilamate	Masaya	Masaya	11.97	86.03	100
El Chilamate	Masaya	Masaya	11.97	86.10	235
El Capulin	Pueblo Nuevo	Esteli	13.32	86.55	900
La Granadilla	Nandaime	Granada	11.45	86.07	137
Los Ranchones	Nandaime	Granada	11.45	87.07	137
Los Ranchones	Nandaime	Granada	11.45	B6.07	137
La Orilla	Nandaime	Granada	11.45	86.07	137
El Eden	Masaya	Masaya			235
La Reina	San Ramon	•			525
La Reina	San Ramon				525
Yuca	San Ramon				525
	•	• •	12.86	85.46	500
•	•	· ·			
		•	12.93	85.22	480
	•	•			
•	•				500
-	·	•			500
	-	•			1000
El Jicote	Wiwili.	Mva. Segovia	13.62	85.81	281
					-
		-			365
	· · ·	•			365
		•			281
		-			365
		•			365
		•			365
	-	-			1000 1000
		•			1000
	•	•			1000
	•	,			1000
	•	-			700
	• •				700
	- ·	-			700
		=			700
		• .			700
CT LOLAGUIL	#d>1d1d	uarañarha	13.20	6114A	100
	Las Pencas Boaco Viejo Boaco Viejo Tierra Azul Tierra Azul El Chilamate El Chilamate El Chilamate El Chilamate El Chilamate El Chilamate El Capulin La Granadilla Los Ranchones Los Ranchones La Orilla El Eden La Reina	Las Pencas Camoapa Boaco Viejo Boaco Boaco Viejo Boaco Boaco Viejo Boaco Tierra Azul Boaco Tierra Azul Boaco El Chilamate Masaya El Chilamate Masaya El Chilamate Masaya El Chilamate Masaya El Chilamate Masaya El Capulin Pueblo Nuevo La Granadilla Nandaime Los Ranchones Nandaime Los Ranchones Nandaime La Orilla Nandaime El Eden Masaya La Reina San Ramon Yuca San Ramon Pancasan Matiguas Guilipi B. de Paiguas Rio Blanco Rio Blanco Mulukuku B. de Paiguas Matiguas Matiguas Matiguas Matiguas Jiguina Jinotega El Jicote Wiwili Sta. Cruz Pantasma La Concordia Wiwili Sta. Cruz Pantasma Penquilla Pantasma Penquilla Pantasma Penquilla Pantasma Penquilla Pantasma Las Lomas Jinotega Sasle Jinotega Sasle Jinotega Sasle Jinotega Sasle Jinotega El Guabo Matagalpa El Guabo Matagalpa El Guabo Matagalpa El Guabo Matagalpa El Guabo Maslala El Guabo Maslala	Las Pencas Cameapa Boaco Boaco Viejo Boaco Boaco Boaco Viejo Boaco Boaco Boaco Viejo Boaco Boaco Tierra Azul Boaco Boaco Tierra Azul Boaco Boaco El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Chilamate Masaya Masaya El Capulin Pueblo Nuevo Esteli La Granadilla Handaime Granada Los Ranchones Nandaime Granada Los Ranchones Nandaime Granada Los Ranchones Nandaime Granada La Orilla Nandaime Granada El Eden Masaya Masaya La Reina San Ramon Matagalpa Yuca San Ramon Matagalpa Fancasan Matiguas Matagalpa Guilipi B. de Paiguas Zelaya Maiguas Matiguas Matagalpa Matiguas Matiguas Matagalpa Natiguas Matiguas Matagalpa Natiguas Matiguas Matagalpa Natiguas Matiguas Matagalpa Siguina Jinotega Jinotega El Jicote Wiwili Nva. Segovia Sta. Cruz Pantasma Jinotega El Jicotey Pantasma Jinotega El Jicotey Pantasma Jinotega La Concordia Miwili Nva. Segovia Sta. Cruz Pantasma Jinotega Penquilla Pantasma Jinotega Sasle Jinotega Jinotega	Las Pencas Camoapa Boaco 12.39 Roaco Viejo Boaco Boaco 12.45 Boaco Viejo Boaco Boaco 12.45 Boaco Viejo Boaco Boaco 12.45 Tierra Azul Boaco Boaco 12.69 Tierra Azul Boaco Boaco 12.69 El Chilamate Masaya Masaya 11.97 El Chilamate Masaya Masaya 11.97 El Chilamate Masaya Masaya 11.97 El Chilamate Masaya Masaya 11.97 El Chilamate Masaya Masaya 11.97 El Capulin Pueblo Nuevo Esteli 13.32 La Granadilla Nandaime Granada 11.45 Los Ranchones Nandaime Granada 11.45 Los Ranchones Nandaime Granada 11.45 Los Ranchones Nandaime Granada 11.45 La Grilla Nandaime Granada 11.45 La Grilla Nandaime Granada 11.45 El Eden Masaya Masaya 11.97 La Reina San Ramon Matagalpa 12.94 Vuca San Ramon Matagalpa 12.94 Fancasan Natiguas Matagalpa 12.94 Fancasan Natiguas Matagalpa 12.98 Mulukuku B. de Paiguas Ielaya Rio Blanco Rio Blanco Matagalpa 12.98 Mulukuku B. de Paiguas Ielaya Matiguas Matiguas Matagalpa 12.86 Matiguas Matiguas Matagalpa 12.86 Matiguas Matiguas Matagalpa 12.86 Matiguas Matiguas Matagalpa 12.86 Matiguas Matiguas Matagalpa 12.86 San Cruz Pantasma Jinotega 13.08 El Jicote Wiwili Nva. Segovia 13.62 Sta. Cruz Pantasma Jinotega 13.34 Penquilla Pantasma Jinotega 13.3	Las Pencas Camoapa Boaco 12.39 85.50

ANEXO Nº 6 DATOS DE PASAPORTE DE LAS ACCESIONES ESTUDIADAS

3145						
3152	El Dorado	Wasiala	Matacalpa	13.20	85.40	700
3153	El Dorado	Waslala	hatagalça	13.20	85.40	700
3154	El Dorado	510Na				
3166	Rosita	kosita	rejaya	13.93	84.39	60
5154	Coperma	židha	ZB18Y8	13.93	64.39	60
3211	Tadasma Central	51ยกล	Zelaya			
3213	San. Miguelato	San Miquelito	R.S.Juan	11.39	84.69	55
3215	El Tele	San Miguelito	R.S.Juan	11.39	84.71	200
3216	El Tule	āsa Miguelito	R.S.Juan	11.39	84.71	200
3219	El Tule	San Miguelito	R.S.Juan	11.39	84.91	200
3222	El Tule	San Miguelito	R.S.Juan			
322 6	Casa cais	San Carlos	R.S.Jean	11.13	84.78	40
3232	Mexico	San Carlos	หี.อี.ปนอก	11.13	84.78	40
3233	Mexico	San Darlos	R.S.Juan	11.13	84.78	40
12.18	Mata de Casa	ean Carios	หั.ธี.งีนลก	11.13	84.78	40
3250	Meschorrita	5an Carlos	R.S.Juan	11.13	84.78	40
3279	Los Ruga⊛as	San Carles	R.S.Juan	11.13	84.78	40.
3293	La Conquista ₩ Z	San Miguelito	A.S.Juan	11.59	89.91	200
3294	La Conquista # 2	San Miguelito	R.S.Juan	11.39	89.91	200
3295	La Conquista # 2	San Miguelito	M.S.Juan	11.39	89.91	200
3298	La Conquista	San Niguelito	8.5.Jean	11.39	89.91	200
3300	La Conquista	San Miguelito	R.S.Juan	11.39	89.91	200

ANEXO NO 7 VARIABLES DE RENDIMIENTOS

Acces.	p100s	Pmuetra	RR-dor	RR-CIA
TDOR	17.29	131.83		
CIA	22.35	216.41		
232	16.34	154.53	132,80	111.68
240	8.55	8.55	16.29	7.10
241	15.85	138.32	61.54	80.87
246	16.53	214.00	189.33	120.83
248	15.21	49.01	93,35	40.68
250	12.98	48.37	37.82	22.38
251	15.39	133.10	141.53	52,10
256	21.77	197.90	199.34	110.73
257	20.24	140.10	156.62	90.37
259	15,57	56.88	63.59	36.69
261	15.86	79.85	61.00	49.07
263	14.86	91.91	64.04	37.90
264	16.9	223,43	85.40	63.25 43.59
267	19.3	153.97	58.85 292.60	196.86
269	15.81 9.94	270.31 9.94	7.77	4.60
273 275	20.18	153.97	136.22	86,93
276	15.31	175.43	120.64	65,42
279	15.49	62.68	105.70	63.69
285	14.84	251.99	127.29	247.95
289	19.27	202.87	125.66	229.02
294	18.49	34,48	38.55	22.24
298	17.69	164.08	63.42	45,11
306	25.5	289.09	188.07	200.28
313	15.76	172.87	187.12	123.98
316	17.75	162,97	109.40	130.40
317	14.34	117.42	174.26	62.68
318	16.35	124.39	168.68	73.29
319	15.6	38.68	30.24	19.29
320	18.95	261.50	116.34	152.88
322	16.05	49.46	42.50	35.74
326	9.63	101.21	44.98	123.17
327	16.11	84,57	94.54 103.75	54.55
328	15.73	161.01	103.75 92. 73	56.43 40.29
330	19.43	68.38 303.18	198.17	134.73
332	19.61		84.92	40.72
422 445	15.01 20.13	108.64 117.24	126.91	84.08
443 508	23,56	143.06	84.52	38.92
508 510	20.14	137.22	89.69	60.98
510	16.83	105.02	111.67	41.11
512 520	16.32	166.39	176.93	65.13
e en en Salvar	24.65	336.95	149.74	410.06
Sat alive often	attack of the last last	the the text of the text of the		,

523	19.71	213.86	139.13	148.16
626	15.21	73.18	55,90	44.97
630	13.93	67.25	33.97	66.17
636	26.09	400.95	403.90	224.33
837	13.92	47.76	42,25	26.96
942	17.23	175.64	114.27	121.68
1214	19.1	1.65.93	98.03	45.14
1221	20.02	163.81	101.46	184.93
1223	18.85	428.71	280.22	190.52
1234	20.69	63.74	121.41	52.91
1236	15.44	263.37	163.13	297.32
1254	19.84	180.40	156.60	101.86
1257	18.26	129.98	138.21	50.88
1262	20.7	136.95	60.86	166.67
1270	24.85	306.59	189.90	346.12
1272	23.89	214.85	111.80	205.03
1287	22.64	322.09	123.11	91.18
1291	13	118.07	101.46	85.33
1272	17.3	142.81	109.09	87.77
1295	17.94	98.52	106.64	70.65
1297	20.73	103.94	66.98	36,43
1305	18.28	136.45	52.74	37.52
1314	18.93	142.60	111.47	53.46
1327	18.52	214.36	138.13	75.13
1335	22.03	173.26	112.72	120.04
1338	13.46	47.83	50.05	22,65
1351	18.38	138.35	187.61	81.52
1419	20.23	125.54	98.15	62,62
1420	9.2	60.99	61.44	34.12
1519	18.44	329.48	125.94	93.27
1524	16,84	127.23	56.60	74.38
1525	13.18	71.60	61.52	51.74
1539	14.99	131.09	84.47	45.95
				25.04
1544	15.94	30.16	57.45	
1556	15.86	21.18	40.34	17.58
1564	17.94	189.47	148.11	71.03
1569	10.57	84.49	74.75	47.70
1606	20.37	186.32	72.02	51.23
1631	15.09	68.88	102.22	36.77
1635	20.94	169.04	75.12	205.72
1638	17.14	93.70	73.24	35.12
1641	15.02	34.71	27.14	17.31
1645	19.37	307.73	118.94	84.61
1648	26.95	338.07	150.40	197.64
1651	21.35	207.85	139.58	167.91
1652	18.09	121.66	104.55	87.93
			150.48	
1654	14.18	139.02	300.48	99.70

ANEXO Nº 7
VARIABLES DE RENDIMIENTOS

				- [1455) 1644 Pr. 1554 12 25 17 4 (47) 4 12 33 34 34 34 34 34 34 34 34 34 34 34 34
1655	15.72	125.10	107.51	90.41
1657	15.7	59.92	46.85	29.89
1658	14.33	75.01	58.65	34.71
1659	16.32	86.83	146.42	88.22
1662	16.93	188.76	144.20	116.01
1664	21.00	254.49	175.00	94,90
1669	17.40	31.10	13.84	18.18
1672	22.12	210.10	136.69	145.56
1677	15.04	190.96	73.81	52.50
1686	18.15	253.51	131.91	241.92
1689	21.19	30.08	15.64	19,43
1718	15,91	20.38	22.76	13.13
1720	16.6	176.59	138.07	81.71
1722	19.69	62.48	69.85	40.30
1724	17.08	140.84	83.20	38.31
1730	17.06	126.73	108.91	91.59
1733	21.05	259.97	115.53	316.38
1739	23.98	200.49	124.18	226.34
1740	21.61	296.49	298.67	165.89
1741	17.69	55.76	43.60	25.80
1747	18.62	150.62	78. 32	92.30
1761	18.84	82.76	71.12	59.81
1775	20.72	101.01	62.56	114.03
1779	20.15	69.52	54.35	32.17
1781	19.47	79.51	134.08	80.79
1782	20.42	189.56	98.56	116.17
1784	17.97	218.57	110,4t	215.06
1785	21.65	148.33	91.87	167.45
1786	16.19	76.85	83.18	55.11
1793	15.85	56.24	83.46	30.02
1796	27.79	350.57	155.96	204,95
1798	14.95	67.21	52.55	31.10
1800 1802	14.95	67.21	52,55	31.10
1805	16.18	24.24	18.95	11.22
1823	18.77	298.55	150.81	293.76
1840	24.83 16.42	336.93	170.20	331,53
1844	14.71	336.93	224.11	332.93
1850	15.58	101.93 173.79	106.66 175.07	48,27
1852	15.25	171.08	130.69	97.24
1866	24.31	278.24		105.15
1885	14.54	113.90	144.68 169.04	170.51
1912	21.91	321.18	142.89	60.80 187.77
1936	18.68	205.73	215.28	97.43
1996	17.76	216.36	112.58	
2005	16.78	460.93	178.16	206.47
2023	16.18	104.76	111.39	126.73 41.00
error. Toot other hand	المهدوق بالداء فلا السابة ملادر	アベルキング	アイア・ウム	"生态"。

2025	24.33	305.52	158.98	291.55
2030	19.81	137.97	187.10	81.29
2071	17.9	30.04	23.49	14.98
2086	18.52	123.31	82.02	98.66
2136	16.34	46.96	69.69	25.07
2253	21.00	208.57	135.69	144.50
		ì		
2264	8.57	13.71	26.11	11.38
2281	18.11	100.25	59.22	27.27
2315	16.91	94,55	95.25	52.90
2317	16.94	67.55	113.91	68.63
2328	16.95	142.98	92.13	50 1 <u>1</u>
any any aria sa Ao ao ao ao ao	17.15	46.39	48.54	21.97
2334	20.24	102.16	151.61	54.54
2337	23.39	297.89	194.71	132.38
2338	18.06	99.59	105,90	38.98
2343	17.15	99.58	105.89	38.98
2352	18.92	209.84	123.97	57.08
2369	19.49	126.85	66.01	121.05
2535	9.48	32.74	34.26	15.50
2596	17.02	124.47	125.39	69.64
2676	15.14	22.55	33.46	12.03
2681	15.22	43.63	33.35	26.81
2598	18.35	78.77	150.04	65.39
2704	16.96	309.20	212.63	115.30
2716	18.13	55.69	43.54	25.77
2717	17.69	75.49	33.58	44.13
2718	17.64	159.43	80.54	156.87
2719	10.43	129.40	135,41	
				61.28
2720	21.4	304.28	196.07	106.65
2721	18.01	24,28	18.98	12.11
2722	15.3	31.74	47.10	16.94
2724	24.02	288.02	191.58	230.45
2750	18.1	147.53	95.06	51.71
2764	10.6	138.50	147.27	54.21
2908	13.86	44.00	30.26	16.41
2718	17.64	159.43	80.54	156.87
2919	18.01	203.86	105.00	124.93
2920	17.21	109.43	75.25	40.80
2924	19.27	151.51	118.44	56.80
2927	20.03	340.23	151.20	414.06
2928	15.53	36.41	28.47	18.16
2929	11.91	139.35	53.26	39.45
2937	20.1	204.35	106.33	195.01
2939	17.28	24.46	46.59	20.30
2940	19.12	36.22	24.09	28.98
2941	18.9	105.73	112.43	41.38
2942	17.43	96.04	84.96	54.22

2943	17.11	240.68	157.32	106.96
2944	17,95	48.49	37.91	22.44
2947	18.34	219.54	129.70	59.72
2953	20.92	135.65	146.83	97.28
2954	17.39	90.21	70.52	33.81
2955	20.44	134,30	142.81	52.57
2957	16.85	40.33	20.99	38.49
2961	16.56	175.47	114.69	77.98
2962	37.36	207.91	135.26	144.04
2963	28.04	112.87	88.23	42.31
2971	21.46	117.11	197.49	118.99
2972	14.92	173.58	132.60	106.68
2983	11.16	97.50	103.67	38.16
2984	15.16	185.22	71.59	50.93
2985	19.66	162.45	100.62	183.39
2986	26.22	385.46	200,43	236.22
2989	17.34	23.61	44.97	19.60
2995	16.75	100.83	78,84	50.30
2997	16.9	115.81	171.87	61.82
2998	17.93	177.27	138.57	66.45
3002	18.8	208.12	108.22	127.54
3005	19.14	244.00	159,49	108.43
3006	19.11	169.97	116.88	63.37
3012	14,32	55.69	93.91	56.58
3014	18.84	132.66	85.48	46.50
3025	21.42	82.78	83.39	46.32
3027	20.07	257.76	259.66	144.22
3029	21.14	242.76	92.79	68.72
3037	17.21	39.05	43.66	25.19
3039	16.77	94.38	83.49	53.29
3043	16.55	202.46	130.46	70.96
3045	7.29	8.69	7.68	4.90
3058	16.3	65.99	50.41	40.55
3060	14.48	283.16	167.28	77.03
3073	17.61	115.58	156.73	68.10
3079	17.97	242.16	107.62	294.71
3087	16.14	183.34	81,48	223.12
3089	18.24	155.77	103.61	124.64
3090	23.88	427.33	293.86	159.34
3091	25.19	334.09	218.37	148.47
3093	17.14	367.42	163.46	214.80
3095	16.35	180.66	155.25	130.57
3097	16.26	20.83	35.13	21.16
3102	14.09	102.98	60.84	20.01
3105	19.96	237.88	153.28	83.38
3106	14,74	169.90	230.40	100.11
3107	16.19	43.92	45.98	20.80

ANEXO Nº 7 VARIABLES DE RENDIMIENTOS

15.35	119.23	91.08	73.28
18.14	109.08	67.56	123.14
14.99	92.73	35.44	26.25
18.47	146.60	76.23	89.84
18.52	108.41	147.01	63.87
18.59	80.10	40,46	78.82
9.18	50.40	38.50	30.97
18.82	189.19	98.37	115.94
17.52	44.09	34.47	20.40
19.62	99.51	167.81	101.11
14.79	144.81	151.53	68.58
20.67	210.40	144.68	78.45
18.53	160.12	217,14	94.34
17	37.27	41.67	24,04
17.03	107.44	116.30	77.05
15.23	73.60	82.28	47.47
15.92	166.93	63.81	47.25
16.42	153.33	77.46	150.87
17.71	298.38	115.33	82.04
19.47	84.53	72.64	61.09
18,51	68.57	92.98	40.40
17.28	206.87	134.58	143.32
20.35	12.73	11.26	7.18
18.25	109.20	72.64	87.37
16.35	152.84	139.22	86.30
19.05	281.01	141.95	276.50
12.77	40.93	42.83	19.38
18.42	59.82	46.77	29.84
14.82	97.62	64.93	78.11
20.2	148,49	57.39	40.83
20.2	148.49	57.42	40.82
	18.14 14.99 18.47 18.52 18.59 9.18 17.62 17.62 14.79 20.63 17.03 15.23 15.42 17.41 19.53 17.23 16.35 17.41 19.55 18.25 14.20 14.82 20.2	18.14 109.08 14.99 92.73 18.47 146.60 18.52 108.41 18.59 80.10 9.16 50.40 18.82 189.19 17.52 44.09 19.62 99.51 14.79 144.81 20.67 210.40 18.53 160.12 17 37.27 17.03 107.44 15.23 73.60 15.92 166.93 16.42 153.33 17.71 298.38 19.47 84.53 18.51 68.57 17.28 206.87 20.35 12.73 18.25 109.20 16.35 152.84 19.05 281.01 12.77 40.93 18.42 59.82 14.82 97.62 20.2 148,49	18.14 109.08 67.56 14.99 92.73 35.44 18.47 146.60 76.23 18.52 108.41 147.01 18.59 80.10 40.46 9.18 50.40 38.50 18.82 189.19 98.37 17.52 44.09 34.47 19.62 99.51 167.81 14.79 144.81 151.53 20.67 210.40 144.68 18.53 160.12 217.14 17 37.27 41.67 17.03 107.44 116.30 15.23 73.60 82.28 15.92 166.93 63.81 16.42 153.33 77.46 17.71 298.38 115.33 19.47 84.53 72.64 18.51 68.57 92.98 17.28 206.87 134.58 19.47 84.53 72.64 18.51 68.57 92.98 17.28 206.87 134.58 20.35 12.73 11.26 18.25 109.20 72.64 16.35 152.84 135.22 19.05 281.01 141.95 12.77 40.93 42.83 18.42 59.82 46.77 14.82 97.62 64.93

Tabla 2. Correlaciones de Person entre 12 carácteres de 261 accesiones de frijol común. Calculados en la Compañía Carazo, Primera de 1995,

	lF	FF	DF	MF	cos	DCR	P100S	NNUD	LONG VAI	LOC VAI	SEM VAI	VA/ PLA
IF C	1.0 0.0								7 - 4 -	,,,,,	****	LLA
FF	0.53457 0.0001	1.0 0.0										
DF	-O.39661 0.0001	0.5638 0.0001	1.0 0.0									
MF	0.583 0.0001	0.66087 0.0001	0.1481 0.0143	1.0 0.0					•			
COS	0.56005 0.0001	0,58955 0.0001	0.09305 0.1251	0.73854 0.0001	1.0 0.0							
DCR	-0.1912 0.0015	0.31968 0.0001	0.53409 0.0001	0.68602 0.0001	0.39069 0.0001	1.0 0.0						
P100S	-0.21363 0.0001	-0.1054 0.0828	0.09433 0.12	0.0466 0.4437	0.10158 0.0939	0.13508 0.0256	1.0 0.0					
NNUD	0.06649 0.3595	0.1036 0.0924	0.05812 0.3459	0.16289 0.0079	0.12314 0.0452	0.14815 0.0158	-0.0353 0.5668	1.0 0.0				
LONGV	-0.02674 0.6648	0.3781 0.54	0.06757 0.2731	0.10906 0.0764	0.11436 0.063	0.15773 0.0101	0.16532 0.007	-O.0209 0,7347	1.0 0.0			
LOCVAI	-0.05301 0.3901	0,01031 0,8673	0.06318 0.3050	-0.0292 0.6363	-0.054 0.3813	0.01236 0.8413	0,08996 0,1442	-0.0541 0.4118	0.18844 0.0024	1.0 0.0		
SEMVAI	0.04678 0.4483	0.03031 0.6233	0.01262 0.838	-0.O692 0.2619	-0.1001 0.1032	-0.0422 0,4936	0.01701 0.7828		0,00374 0,9517		1.0 0.0	
VA/PLA	0.0923 01325	0.15176 0.013	0.07585 0.2167	0.11933 0.0515	0.06264 O.3079	0.06262	0.05332 0.3868		0.00625 0.91195		0.0228 0.7110	

IN= inicio de floración, FF= fin de la floración, DF= duración de la floración, MF= madurez fisiológica, COS= cosecha, DCR= duración del ciclo reproductivo, P100S= peso de 100 semillas, NNUD= número de nudos, LONGVAI= longitud de vaina, LOCVAI= lóculos por vaina, SEMVAI= semillas por vaina, VA/PLA= vainas por planta, C= coeficiente de correlación, P= probabilidad.