Estudio de Vulnerabilidad ante Deslizamientos de Tierra en la Microcuenca Las Marías. Telica, León

Autores:
Br. Rolando Miguel Pérez Espinales
Br. José Eduvige Rojas Gómez

Asesores:
Dr. Efraín Acuña Espinal
Ing. Fernando Mendoza Jara

Managua Nicaragua,
Diciembre de 2005
INDICE GENERAL

<table>
<thead>
<tr>
<th>Pagina</th>
<th>Resumen</th>
<th>Sumary</th>
<th>Dedicatoria</th>
<th>Agradecimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I INTRODUCCIÓN
1.1 Antecedentes
1.2 Justificación

II OBJETIVOS
2.1 OBJETIVO GENERAL
2.2 OBJETIVOS ESPECÍFICOS

III REVISION DE LITERATURA
3.1 Aspectos Relacionados Con Deslizamientos De Tierra
3.1.1 ¿Cómo se clasifican de los terrenos inestables?
3.1.2 Clasificación de los deslizamientos de tierra
3.1.2.1 Clasificación de acuerdo a su geometría
3.1.2.2 Clasificación de los deslizamientos por su tipo y movimiento
3.1.2.3 Clasificación según la velocidad del movimiento
3.1.3 ¿Cómo identificar los deslizamientos?
3.1.4 Factores relacionados a los deslizamientos de tierra
3.1.5 Fenómenos casuales antes de un deslizamiento de tierra
3.1.6 Algunas definiciones aplicadas a deslizamientos de tierra
3.1.6.1 Peligro de deslizamientos de tierra
3.1.6.2 Vulnerabilidad
3.2 Aspectos Relacionados a Sistemas de Información Geográfica
3.2.1 ¿Qué es Sistemas de Información Geográfica (SIG)?
3.2.2 Modelos Digitales del Terreno (MDT)
3.2.3 Modelo digital de elevaciones
3.2.4 Aplicación de los SIG a los fenómenos de deslizamientos de tierra
3.3 Aspectos Relacionados con Erosión Hídrica

3.3.1 Concepto de erosión hídrica y tipos de erosión

3.3.1.1 Erosión hídrica

3.3.1.2 Tipos de erosión hídrica

3.3.2 Modelos utilizados en la determinación de la erosión hídrica

3.3.2.1 Nivel medio-bajo de necesidad de datos

3.3.2.2 Modelos que requieren gran disponibilidad de datos

IV MATERIALES Y METODOS

4.1 Localización

4.2 Características biofísicas

4.2.1 Acceso

4.2.2 Suelos

4.2.2.1 Clasificación taxonómica de los suelos

4.2.2.2 Uso anterior y actual del suelo en la Microcuenca

4.2.3 Vegetación

4.2.4 Geología

4.2.5 Clima

4.2.6 Relieve

4.2.7 Características Morfométricas de la Microcuenca

4.3 Características Socioeconómicas

4.3.1 Infraestructura y servicios en las comunidades

4.4 Metodología Temática del Cálculo de Perdida de suelo

4.4.1 Calculo del Factor R

4.4.2 Calculo del Factor k

4.4.3 Calculo del Factor L y S

4.4.4 Calculo del Factor C

4.4.5 Diseño en sistemas de información geográfica

4.4.5.1 Modelo conceptual

4.5 Metodología para la evaluación de Amenaza de Ocurrencia de Deslizamiento
relativa de ocurrencia de fenómenos de deslizamientos de tierra...43
4.5.2.1 Mapa de Susceptibilidad a Deslizamiento de los Factores Intrínsecos...45
4.5.2.1.1 Mapa de litología afectada por fracturamiento.................................45
4.5.2.1.2 Mapa de densidad de drenaje...46
4.5.2.1.3 Mapa de pendientes...47
4.5.2.2 Mapa de Factores Detonantes o Extrínsecos.......................................48
4.5.2.2.1 Mapa de erosión actual..48
4.5.2.2.2 Mapa de conflicto de uso del suelo..49
4.5.2.2.3 Mapa de clima...49
4.5.2.3 Diseño en Sistemas de Información Geográfica (SIG).......................50
4.5.2.3.1 Modelo Conceptual..50
4.6 Materiales..52
4.6.1 Equipos utilizados...52
4.6.2 Programas..52
V RESULTADOS Y DISCUSIÓN...53
5.1 Análisis de los Factores Intrínsecos..53
5.2 Análisis del mapa de la Erosión Hídrica...56
5.3 Análisis de los Factores Extrínsecos..61
5.4 Mapa de Amenaza Relativa por Fenómenos de Deslizamientos de Tierra...64
VI CONCLUSIONES Y RECOMENDACIONES..68
VII BIBLIOGRAFÍA..71
ANEXOS...74
<table>
<thead>
<tr>
<th>Tablas</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Numero de orden y longitud de las corrientes en la red hidrológica</td>
<td>31</td>
</tr>
<tr>
<td>2. Resultado de Identificación local de Niveles de vida en la Comunidad</td>
<td></td>
</tr>
<tr>
<td>Las Carpas, micro cuenca Las Carpas</td>
<td>33</td>
</tr>
<tr>
<td>3. Resultado de Identificación local de Niveles de vida en la Comunidad</td>
<td></td>
</tr>
<tr>
<td>Los Mangles, micro cuenca Los Mangles</td>
<td>33</td>
</tr>
<tr>
<td>4. Resultado de Identificación local de Niveles de vida en la Comunidad</td>
<td></td>
</tr>
<tr>
<td>Las Marías, micro cuenca Las Marías</td>
<td>34</td>
</tr>
<tr>
<td>5. Asignación de valores al factor C (EUPS), en función del tipo de cobertura</td>
<td>41</td>
</tr>
<tr>
<td>6. Definición de los niveles de susceptibilidad a deslizamientos de tierra</td>
<td>44</td>
</tr>
<tr>
<td>7. Calificación por susceptibilidad a deslizamientos de tierra en función de la densidad de drenaje</td>
<td>45</td>
</tr>
<tr>
<td>8. Intervalos de pendientes, formas del terreno y la susceptibilidad a deslizamientos de tierra</td>
<td>47</td>
</tr>
<tr>
<td>9: Definición de los niveles de Amenaza de ocurrencia de deslizamientos de tierra</td>
<td>48</td>
</tr>
<tr>
<td>10. Valor del factor R para las estaciones meteorológicas Posoltega, Las Marías y Villa 15 de Julio</td>
<td>58</td>
</tr>
<tr>
<td>11. Estimación del factor K de la EUPS</td>
<td>58</td>
</tr>
<tr>
<td>12. Uso y cobertura en la Microcuenca y factor C asignado</td>
<td>59</td>
</tr>
<tr>
<td>Figuras</td>
<td>Páginas</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1: Mapa de ubicación de la microcuenca Las Marías</td>
<td>23</td>
</tr>
<tr>
<td>2. Precipitación en la microcuenca Las Marías</td>
<td>29</td>
</tr>
<tr>
<td>3. Modelo conceptual para predicción de Erosión Hídrica Actual</td>
<td>42</td>
</tr>
<tr>
<td>4: Modelo Conceptual para la Predicción de Deslizamientos de Tierras</td>
<td>51</td>
</tr>
<tr>
<td>5: Mapa de factores intrínsecos</td>
<td>55</td>
</tr>
<tr>
<td>6: Mapa de Erosión de la microcuenca Las Marías, Telica, León</td>
<td>60</td>
</tr>
<tr>
<td>7 Árbol en las laderas de Lomas de Ojo de Agua</td>
<td>62</td>
</tr>
<tr>
<td>8. Árbol de palmera en las laderas con deslizamiento activo</td>
<td>62</td>
</tr>
<tr>
<td>9. Mapa de Factores Extrínsecos</td>
<td>63</td>
</tr>
<tr>
<td>10. Deslizamientos de tierra en los cerros Lomas Ojo de Agua</td>
<td>65</td>
</tr>
<tr>
<td>11. Mapa de amenaza relativa por fenómenos de deslizamientos</td>
<td>66</td>
</tr>
<tr>
<td>12. Mapa de áreas modeladas y deslizamientos de 1998</td>
<td>67</td>
</tr>
</tbody>
</table>
INDICE DE ANEXOS

<table>
<thead>
<tr>
<th>Anexos</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Mapas temáticos de los factores utilizados para el cálculo de la Ecuación universal de Pérdida de Suelo (EUPS)</td>
<td>75</td>
</tr>
<tr>
<td>B. Mapas temáticos utilizados para generar el mapa de factores intrínsecos</td>
<td>81</td>
</tr>
<tr>
<td>C. Mapas temáticos utilizados para generar el mapa de factores extrínsecos o detonantes</td>
<td>87</td>
</tr>
<tr>
<td>D. Datos meteorológicos para la estación Las marías, Villa 15 de Julio y Posoltega</td>
<td>91</td>
</tr>
</tbody>
</table>
RESUMEN

La frecuencia con que se presentan los desastres naturales ha sido de interés para el hombre por los impactos negativos que ocasionan en nuestra sociedad (Volcán Casitas, Cerro Musún, Río San Juan, etc.). Actualmente en Nicaragua se han venido realizando estudios sobre este tema con el objetivo fundamental de salvar las vidas de los pobladores que habitan en las comunidades más pobres y que se encuentran vulnerables a sufrir estragos por desastres naturales. Este estudio fue realizado en la microcuenca Las Marías, municipio de Telica, León, con el objetivo de elaborar mapas indicativos de amenazas por deslizamientos de tierra, se utilizó el método HEURISTICO geomorfológico. Método que consiste en realizar análisis espacial de coberturas temáticas (edáficos, geológicos, climáticos, y antrópicos) con el uso de los Sistemas de Información Geográfica (SIG). Durante el proceso se generó como uno de los resultados un mapa de erosión de la microcuenca, que vino a formar parte de las coberturas que fueron calificadas de acuerdo a cinco niveles basados por aporte a los fenómenos de deslizamientos de tierra (desde muy bajo hasta muy alto), de manera que al ser superpuestas se obtuvo un mapa de factores intrínsecos (susceptibilidad) y un mapa de factores extrínsecos (detonantes), la superposición de estos últimos permitió obtener el mapa de amenaza relativa por fenómenos de deslizamientos de tierra, en donde se encontró que el área más peligrosa corresponde al cerro Loma de Ojo de Agua, debido a que muy cerca de el habitan las comunidades de Pozo Viejo y Ojo de Agua, a su vez en este mapa se puede corroborar los puntos de GPS de los deslizamientos ocurridos durante el huracán Mitch (1998). Por otro lado los resultados obtenidos permiten ver que los factores que más han incidido en aumentar la vulnerabilidad a los deslizamientos son la geología, el grado de erosión, la pendiente del terreno y la incidencia antrópica reflejada en los altos conflictos de uso de la tierra.
The frequency that the natural disasters have been hit the environment have been of interest for mankind for the negative impacts that they cause in our society (Volcan Casitas, Cerro Musun, Río San Juan, etc.). Currently studies have been done on this topic with the prime objective to save the lives of the people who live in the poorest communities which are vulnerable to suffer have by natural disasters. This study was carried out in the microbasin Las Marías municipium of Telica, León with the objective to work out in great details maps that show threats signs of land slide the method used was HEURISTIC geomorphologic, method that consists of done special analysis of thematic covering (edaphic, geologic, climatic and antrumpic) in the Geographic Information System (GIS). During the process it was generated as one of the results, a erosion map of the microbasin, which because part of the covering that the were determined according to five levels, based for contribution to the land slide (from very low to high), in a way that when it was overlapped a map intrinsic factors was obtained (susceptibility) and a map of extrinsic factors (detonant) the overlapping of the both maps allowed the relative threat map for land slide where the most dangerous area was found at Cerro Loma de Ojo de Agua, because very near the they inhabit the communities of Pozo Viejo y Ojo de Agua, to this it allows us to corroborate the points of GPS of earth slidings happened during the hurricane Mitch (1998). On the other aspect the obtained results allow to see that the factors that more they have impacted in increasing the hazard slides, they are the geology, the erosion degree, the slope of the land and the incidence antrumpic reflected in the high conflicts of use of the earth.
DEDICATORIA

A Dios por guiarme y permitirme terminar con éxito este trabajo y darme sabiduría en las tomas de decisiones

A mis padres y hermanos por su apoyo, amor y comprensión durante toda mi carrera que me ha servido de aliento para seguir adelante

A mi amigo José Rojas por su amistad y apoyo incondicional

Rolando Pérez

A Dios que siempre me ha iluminado y que me ha permitido finalizar con gran satisfacción este trabajo

A mis padres y a todos mis hermanos pero dedico de todo corazón a mi madre Miriam Gómez quien ha luchado para que yo me preparara

A mi mejor amigo Rolando Pérez que con su apoyo incondicional finalizamos esta tesis.

José Rojas
AGRADECIMIENTOS

Los autores de este documento agradecemos de todo corazón:

A Dios, a nuestros padres y hermanos, por su sabiduría, apoyo y comprensión

A PASMA-DANIDA por facilitar el financiamiento para que este estudio se pudiese llevar acabo.

Al Dr. Efraín Acuña Espinal por orientarnos sabiamente y apoyarnos durante todo este trabajo, por sus consejos y enseñanzas, pero principalmente agradecemos su amistad.

Al Ing. Fernando Mendoza por su apoyo y orientación y por darnos la oportunidad de obtener nuevos conocimiento a través de su enseñanza como maestro, asesor y principalmente amigo.

A todos los profesores que nos impartieron clases en los cinco años de nuestra carrera por brindarnos conocimientos y herramientas que nos servirán durante toda nuestra vida.

A todos muchas gracias
I INTRODUCCIÓN

Nicaragua es un país que ha sufrido grandes pérdidas ambientales y humanas a causa de los desastres naturales que son ocasionados por los huracanes, los sismos, los fenómenos de remoción en masa, entre otros. Tal es el caso del deslizamiento de tierra ocurrido en las laderas del volcán Casita. La frecuencia con que estos tipos de fenómenos de remoción en masa ocurren es debida entre otros aspectos a la deforestación, al mal uso y manejo de los suelos y a la falta de medios para mitigar o prevenir los impactos negativos que ocasionan.

En nuestro país existe mucha pobreza, el cual es un factor que viene a incrementar los efectos de los desastres naturales, lo que afecta a todos los sectores socioeconómicos con pérdidas directas e indirectas, ello incluye la pérdida de hogares y empleos, la disminución de ingresos, aumento en los costos de producción y de servicios así como impactos sobre el ambiente y los recursos naturales, acentuando cada vez más males sociales como la pobreza misma, enfermedades, degradación ambiental y migraciones.

Por otro lado, estos efectos pueden verse aminorados mediante la prevención y predicción de los desastres naturales con el uso de los Sistemas de Información Geográfica (SIG), el cual constituyen una excelente herramienta para realizar análisis espaciales de acuerdo a las condiciones edafoclimáticas presentes en determinada área.

Este estudio esta enfocado a lo que es la predicción de fenómenos de deslizamientos de tierras en la microcuenca Las Marías ubicada en el municipio de Telica en el departamento de León. Para lograr esto se utilizó mapas e información necesaria de la microcuenca y se procesó dicha información mediante el uso de la herramienta SIG con el objetivo de elaborar mapas indicativos para predecir áreas vulnerables a los fenómenos de deslizamientos de tierra a nivel de microcuenca.
1.1 Antecedentes

En Nicaragua se contabilizan una gran serie de fenómenos naturales desde huracanes, terremotos y tsunamis, todos estos fenómenos a su paso han causado grandes pérdidas humanas y materiales, ocasionando gran déficit en la economía del país una y otra vez.

A pesar de que los deslizamientos de tierra con niveles catastróficos ya habían ocurrido en Nicaragua desde las épocas indígenas (deslizamiento de las faldas del volcán Mombacho), en el año de 1570 de la colonia Española (Wheelock, et al. 2000), fue a raíz de 1998 con el deslizamiento de tierra desde el volcán Casitas y la catástrofe causada en pérdidas de vidas humanas y materiales, y más aún el impacto social en la población Nicaragüense, que tanto el Gobierno de Nicaragua como las organizaciones No Gubernamentales, vienen proponiendo los estudios de vulnerabilidad a deslizamientos de tierra a todos los niveles en el país.

Lo mismo ocurrió en el año de 2004 en el Cerro Musún localizado en Río Blanco departamento de Matagalpa, cabe señalar que el anterior no fue ocasionado por ningún huracán, si no que en la zona generalmente permanece lloviendo lo cual pudo haber sido la principal causa de que el suelo se saturara y se precipitara todo el material compuesto por un gran flujo de lodo y troncos.

Actualmente la Universidad Nacional Agraria en concreto la Facultad de Recursos Naturales y del Ambiente se encuentra trabajando en la microcuenca Las Marías, para evaluar el estado actual de los recursos naturales y elaborar planes de manejo del bosque, el suelo y el agua en el sentido de su mejor gestión y aprovechamiento, con la presentación hasta la fecha de mucha información actualizada y de calidad.

Sin embargo, hasta ahora está trabajando en la prevención de desastres naturales a pesar de que esta microcuenca está en el área colindante al desastre del
volcán Casitas y también sufrió problemas de inundaciones poniendo en peligro varias comunidades de la microcuenca.

1.2 Justificación

El área concerniente a la microcuenca Las Marías, se encuentra con múltiples amenazas de desastres naturales entre estas las erupciones volcánicas, las inundaciones y deslizamientos de tierra. En el caso de este estudio se pretende abarcar únicamente los deslizamientos de tierra, debido a que la microcuenca Las marías colinda con el volcán Casitas, lugar en donde ocurrió un deslizamiento de tierra durante el huracán Mitch (Octubre de 1998), que acabó con un poblado entero que vivían en las laderas del volcán, el número de pérdidas humanas no se sabe con exactitud por que la mayoría terminó sepultada por la gran cantidad de material que se desprendió.

Estas pérdidas pudieron evitarse; sin embargo para entonces no se contaba con suficientes medios para predecir donde pudiese suceder este fenómeno, el objetivo es que no se repita este fenómeno en la microcuenca Las Marías, ya que esta área ya ha presentado deslizamientos pequeños en áreas donde habitan muchas personas, de manera que presenta las mismas condiciones que existían antes de la catástrofe en las laderas del volcán Casitas.

En este sentido, se plantea evaluar las condiciones edáficas, geomorfológicas, geológicas y climáticas para estimar el grado de vulnerabilidad de la microcuenca ante los deslizamientos de tierra a través del uso de los sistemas de información geográfica de manera que se pueda obtener mapas indicativos de las principales áreas que se encuentran vulnerables a sufrir de este tipo de desastre.
II OBJETIVOS:

2.1 OBJETIVO GENERAL

- Zonificar la amenaza relativa por fenómenos de deslizamientos de tierra mediante el uso de los Sistemas de Información Geográfica en la microcuenca Las Marías, Telica, León.

2.2 OBJETIVOS ESPECÍFICOS

- Obtener áreas susceptibles (Factores intrínsecos) y contribuyentes (Factores detonantes) a la generación de fenómenos de deslizamientos de tierra.

- Estimar el riesgo de erosión hídrica bajo condiciones actuales mediante la Ecuación Universal de Pérdida de Suelo (EUPS) y a través del uso de SIG.

- Corroborar la aplicación del método Heurístico geomorfológico con la información edáfica, climática, geológica (etc.), existente a nivel de cuencas.
III REVISION DE LITERATURA

3.1 Aspectos Relacionados Con Deslizamientos De Tierra

3.1.1 ¿Cómo se clasifican los terrenos inestables?

Según ALARN (2002), existen cinco mecanismos fundamentales de inestabilidad, que sirven como base para otras clasificaciones más específicas que son:

Deslizamientos

Se definen como el movimiento de una masa de rocas o suelos a lo largo de una superficie de ruptura. Implica tanto fenómenos lentos como episodios rápidos. El movimiento puede ser de tipo rotacional, traslacionales, plano o complejo. Pueden ser superficiales o profundos.

Según Zinck, (1996), un deslizamiento corresponde a un desplazamiento de material en estado semi-sólido (entre el límite de encogimiento y el límite plástico), con poca lubricación hídrica pero frecuentemente asistido por la fuerza de gravedad. En general, el movimiento es instantáneo y rápido de carácter catastrófico, y ocurren en pendientes fuertes, naturales o artificiales.

Derrumbe o caída

Según Varnes, (1978) citado por ALARN (2002), Sucede cuando la masa (por lo general de roca) o el bloque de piedra se desprenden de una ladera y cae por la acción de la gravedad, sin tener una real superficie de deslizamiento.

Según Zinck, (1996) la fuerza motriz de los desplazamientos de materiales por simple caída o desplome es la fuerza de gravedad. Por esta razón, las caídas se separan a veces de los movimientos en masa propiamente dicho y se clasifican en
movimientos gravitacionales. El material se desplaza como sólido seco, sin o con limitada asistencia de agua, y cae al pie de una vertiente vertical dominante.

Basculamiento o alabeamiento

Según ALARN (2002), es una deformación rotacional de las cabezas de formaciones estratificadas muy empinadas, donde el centro de rotación se ubica en la parte baja de la masa inestable y es la parte superior que gira hacia fuera, a manera de un mástil que pivotea a partir de un eje inferior.

Coladas ó Flujos

Movimiento de una masa de detritos sobresaturados casi en estado líquido, similar al de los fluidos viscosos de carácter rápido y generalmente formando un perfil longitudinal alargado, con un cono terminal.

Según Aguilar, (1996) Las coladas se clasifican de acuerdo a la naturaleza del material movido y de las velocidades del flujo. Los materiales pueden ser de composición homogénea (lodo, tierra) o mezclas de matriz fina con escombros (gravillas hasta bloques) la velocidad del desplazamiento varía en función de factores como el tipo y la densidad de la cubierta vegetal, la pendiente, la rugosidad de la microtopografía, el grado de disección de la topografía, la proporción sólida líquida, la granulometría del material, entre otros.

Arrastre o hincamiento y extrusión lateral

Movimiento combinado de extrusión de una masa plástica o menos competente situada en la base y que soporta una masa tabular rígida que, una vez fracturada, sufre un movimiento vertical y horizontal.
3.1.2 Clasificación de los deslizamientos de tierra

3.1.2.1 Clasificación de acuerdo a su geometría

Según Zinck, (1996), existen dos tipos de deslizamientos de acuerdo a la geometría del desplazamiento los cuales son:

Deslizamientos Rotacionales:

Un deslizamiento rotacional involucra un movimiento semi-circular del material en un plano curvo, alrededor de un eje transversal a la vertiente. Mientras la parte trasera del paquete se desploma y se une, el frente se levanta en ligera contra pendiente. Los materiales mas favorables son de composición homogéneas, no estratificado y sin control estructural. Se trata por lo general de saprofitas espesas, formada por alteración de rocas cristalinas (ígneas o metamórficas), o de mantes deposicionales diversos.

Deslizamientos traslacionales:

Corresponden a movimientos en planchas, paralelo a la inclinación de un relieve y al buzamiento del sustrato rocoso. Rocas estratificadas o esquistosas, inclinadas paralelamente a la pendiente, son particularmente favorables. La superposición de capas porosas sobre estratos impermeables permite el cizallamiento. Usualmente este tipo de deslizamiento es de gran extensión transversal y se explaya en la zona frontal.
3.1.2.2 Clasificación de los deslizamientos por su tipo y movimiento

Según Jiménez, (2002) los deslizamientos de tierra se puede clasificar por su tipo y movimiento de la siguiente manera:

Rodados:

Un rodado es una masa de roca u otro material que se desciende por medio de una caída o rebote en el aire. Estos son más comunes a lo largo de caminos empinados o terraplenes ferroviarios, acantilados empinados o arrecifes socavados escarpadamente, especialmente en las regiones costeras una sola roca grande puede causar grave daño.

Deslizamientos:

Resultan de fallas de corte (restablecimiento) a lo largo de una o varias superficiales, el material deslizado puede quedar intacto o puede romperse, los deslizamientos se definen como movimiento lento o rápido del material superficial de la corteza terrestre (suelo, arena, roca) pendiente abajo debido a un aumento de peso, pérdidas de consistencia de los materiales o algún otro factor que genere un desequilibrio en la ladera. A estas condiciones se le debe sumar factores externos como la sismicidad, el volcanismo y las lluvias.

Derrumbe:

Un derrumbe se debe a las fuerzas derrivadoras que causa la rotación de roca fuera de su posición original. La parte rocosa puede haberse estacionado en un ángulo inestable, balanceándose en un punto de giro del cual se inclina una rueda hacia delante. Un derrumbe tal vez no contenga mucho movimiento y no necesariamente provoca una caída o desprendimiento de rocas.
Propagación lateral:

Grandes bloques de tierra se propagan horizontalmente fracturándose desde su base original. La propagación lateral generalmente ocurre en pendientes suaves, usualmente de menos de 6% y típicamente se propagan de 3 a 5 metros, pero pueden moverse desde 30 a 50 metros donde las condiciones sean favorables. En el caso de propagación lateral usualmente hay rompimiento interno formándose, numerosas grietas y acantilados. El proceso puede ser causado por licuefacción donde la arena o el sedimento suelto y saturado asumen un estado licuado. Usualmente ocurre por el estremecimiento del suelo.

Aludes

Los aludes avanzan como un líquido viscoso, a veces muy rápido y puede cubrir varios kilómetros. No es necesaria la presencia del agua para que se produzca el alud; sin embargo, la mayoría de los aludes se forman después de periodos de intensas lluvias. Un alud de lodo contiene por lo menos 50% de arena, sedimentos y partículas de arcillas.

Un lahar es un alud de lodo que se origina en la pendiente de un volcán y que puede ser activado por las lluvias, por repentino derretimiento de nieve o glaciares o por el agua que fluye de lagos de cráteres. Un torrente de eyeciones es una mezcla acuosa de tierra, rocas y materia orgánica combinada con aire y agua. Los torrentes de eyeciones ocurren usualmente en barrancos empinados. Los aludes muy lentos, casi imperceptibles de tierra y lecho de rocas se llaman movimiento paulatino. Durante largo tiempo los movimientos paulatinos del terreno pueden causar la caída de postes de tendido eléctrico y otros objetos.
3.1.2.3 **Clasificación según la velocidad del movimiento**

Según Jiménez, (2002) los deslizamientos de tierra también se pueden clasificar según su velocidad del movimiento en:

Rápido:

Alcanzan velocidades hasta de metros por segundo y se pueden originar en zonas con pendientes muy fuertes y empinadas, donde domina la caída de rocas de residuos que se acumulan formando un talud o se puede producir al deslizarse una gran masa en segundos o minutos. Entre ellos tenemos, desprendimientos y flujos de lodo.

Lento:

Las velocidades son del orden de centímetros o metros por año. Se caracterizan por transportar gran cantidad de material. Evidencias que muestran la presencia de un deslizamiento lento son: la inclinación de los árboles a favor de la pendiente, la inclinación de cercas, el agrietamiento de casas, etc.

3.1.3 ¿Cómo identificar los deslizamientos?

Según ALARN (2002), los terrenos de deslizamientos pueden ser identificada a través de observaciones e interpretaciones de los mapas geológicos y topográficos, de fotografías aéreas de diferentes años, así como observaciones de campo.

En los mapas topográficos es posible observar disturbios o discontinuidades en las curvas de nivel (curvas no paralelas o caóticas) y relacionarla con terrenos inestables. Para ayudar a visualizar estas discontinuidades pueden realizarse perfiles topográficos y geológicos, tanto en las áreas afectadas como en las áreas no afectadas; en mapas antiguos como en los más recientes, lo cual permite comparar la topografía y definir el área de deslizamiento. La densidad y tipo de drenaje es otro factor a
considerar así como los cursos de ríos desviados. Toda esa información debe ser verificada en el campo.

3.1.4 Factores relacionados a los deslizamientos de tierra

Según Jiménez, (2002), existen factores principales que contribuyen a la formación de este tipo de procesos:

Clima:

De acuerdo con las características que presenta puede favorecer la inestabilidad del subsuelo al aportar una suficiente cantidad de agua, debido a la presión que ejerce el líquido en los poros y fisuras del suelo. Así mismo, las lluvias y la formación de corrientes de agua por la superficie (escorrentía superficial) favorecen los procesos de erosión.

Las altas precipitaciones en combinación con el tipo de suelo, en algunos casos el material muy alterado fomenta la formación y aceleración de los deslizamientos ya que un suelo arcilloso se satura por la cantidad de agua recibida, se hace mas pesado y unido con el grado de pendiente existente se puede deslizar.

Topografía:

Los deslizamientos ocurren con mayor frecuencia en terrenos de pendientes pronunciadas y desprovistas de vegetación.

Geología:

Aporta un número de parámetros importantes para comprender la inestabilidad de las laderas, entre estas el tipo de material y sus características.
Litología:

Los tipos de rocas y la calidad de los suelos determinan en muchos casos la facilidad con que la superficie se degrada por la acción de los factores externos entre los cuales tenemos (meteorización, intemperismo, etc.).

Estructura:

Determinan zonas de debilidad (fallas, diaclasas y plegamientos), la colocación de los materiales en posición favorable a la inestabilidad (estratos).

Sismicidad:

Las vibraciones provocadas por sismos puede ser lo suficientemente fuertes como para generar deslizamientos de diversa magnitud afectando extensas áreas.

Vulcanismo:

Es un elemento disparador de fenómenos de inestabilidad, tanto por la propia actividad volcánica (sismos volcánicos y deformación del aparato volcánico), por la acumulación progresiva de materiales fragmentarios (cenizas, bloques, etc.), que por sus características físicas favorecen la inestabilidad de los terrenos en áreas aledañas a la influencia volcánica.

Factores antrópicos (actividad del hombre)

Todos los fenómenos descritos anteriormente forman parte del natural equilibrio geológico y que puede romperse con la actividad constructiva y destructiva del hombre; de esta manera el ser humano contribuye a provocar o acelerar estos fenómenos.
Esto sucede, cuando la actividad humana se realiza sin una adecuada planificación, especialmente en obras viales (carreteras y puentes), explotación de tajos, desarrollos urbanísticos, rellenos mal hechos, corte en el perfil natural de laderas, deforestación, prácticas agrícolas deficientes en la conservación de suelos entre otros. Todo esto promueve procesos de inestabilidad en suelos que en cierta medida son naturalmente vulnerables a esta clase de fenómenos y que tienen graves consecuencias en el futuro.

3.1.5 Fenómenos casuales que se presentan antes de ocurrir un deslizamiento de tierra.

Según Jiménez, (2002), los deslizamientos de tierra ocurren como resultado de cambios súbitos o graduales en la composición, estructura, hidrológica o vegetación de una ladera. Estos cambios pueden ser causados por:

- Vibraciones por terremotos, explosiones, maquinarias, tráfico y truenos. Algunos de los deslizamientos de tierra más desastrosos han sido provocados por terremotos, cambios en el contenido del agua causado por copiosas precipitaciones y subida de los niveles de agua subterránea.

- Remoción del apoyo lateral causado por erosión, falla previa de la ladera, construcción, excavación, deforestación o perdida de vegetación estabilizadora.

- Exceso de peso de lluvia, granizo, nieve, acumulación de piedras sueltas o material volcánico, acumulaciones de roca, acumulación de desechos y peso de edificaciones y vegetación.

- Desgaste y otras acciones físicas o químicas puede disminuir las fuerzas de las rocas y del suelo con el tiempo.
Los deslizamientos de tierra en áreas urbanas a menudo inducidos por acciones humanas:

- Interrupción del curso de las aguas y cambio en el agua potable.
- Nuevas construcciones en las cuales se usan métodos de “desmonte y terraplén”, los cuales perjudican la estabilidad de la tierra.

3.1.6 Algunas definiciones aplicadas a deslizamientos de tierra

Según la AID, (1993) se entiende por:

3.1.6.1 Peligro de deslizamientos de tierra:

Como la susceptibilidad, que es la probabilidad de la ocurrencia de un deslizamiento de tierra potencialmente dañino en una determinada área.

3.1.6.2 Vulnerabilidad

Es el nivel de poblaciones, propiedades, actividades económicas, incluyendo los servicios públicos, etc., en riesgo en determinada área como resultado de la ocurrencia de un deslizamiento de tierra de determinado tipo.

3.2 Aspectos Relacionados a Sistemas de Información Geográfica

3.2.1 ¿Qué es Sistemas de Información Geográfica (SIG)?

Es una de las herramientas que permiten integrar información espacial y alfanumérica. Su desarrollo responde a la necesidad de hacer análisis espaciales, muy difíciles de realizar manualmente, con diferente nivel de cobertura y resolución. La función principal de un SIG es la de ayudar a planificadores y administradores en el manejo adecuado de la información espacial y en la toma de decisiones (Ruiz y Molina 2001).
3.2.2 Modelos Digitales del Terreno (MDT)

Son una parte de los datos digitales geométricos, describen a partir de puntos o arcos de un área seleccionada la topografía de la superficie terrestre y mediante los métodos de interpolación encuentran el relieve de los puntos desconocidos (Ruiz y Molina, 2001).

Según Felicísimo (2000), la definición formal es la siguiente: un modelo digital del terreno es una estructura numérica de datos que representa la distribución espacial de una variable cuantitativa y continua.

Los modelos digitales del terreno o MDT son, por tanto, modelos simbólicos ya que las relaciones de correspondencia que se establecen con el objeto real tienen la forma de algoritmos o formalismos matemáticos.

3.2.3 Modelo digital de elevaciones

Un modelo digital de elevaciones es una estructura numérica de datos que representa la distribución espacial de la altitud de la superficie del terreno. Un terreno real puede describirse de forma genérica como una función bivariable continua \(z=0 \ (x, y) \) donde \(z \) representa la altitud del terreno en el punto de coordenadas \((x, y) \) y \(0 \) es una función que relaciona la variable con su localización geográfica. En un modelo digital de elevaciones se aplica la función anterior sobre un dominio espacial concreto, \(D \). En consecuencia, un MDE puede describirse genéricamente como \(\text{MDE}= (D, 0) \), (Felicísimo, 2000).

3.2.4 Aplicación de los SIG a los fenómenos de deslizamientos de tierra

Según Brabb (1985) citado por AID (1993), con el uso de la herramienta SIG se ha logrado determinar las áreas de susceptibilidad a deslizamientos. La susceptibilidad de determinada área a los deslizamientos se puede determinar y describir en base a la
zonificación del peligro. Se puede preparar un mapa del peligro de deslizamientos muy al inicio del estudio de planificación y desarrollarlo en mayor detalle a medida que avanza el estudio.

Se puede usar como herramienta para identificar las áreas de terrenos mejor caracterizadas para el desarrollo, examinando el riesgo potencial de los deslizamientos. Aún más, una vez que se identifique la susceptibilidad a los deslizamientos, se pueden desarrollar proyectos de inversión que eviten, prevengan o mitiguen significativamente el peligro.

Para determinar la extensión del peligro de deslizamientos, se requiere identificar aquellas áreas que podrían ser afectadas por un deslizamiento dañino y evaluar las probabilidades de ocurrencia en un determinado período de tiempo. Sin embargo, en general es difícil precisar un período de tiempo para la ocurrencia de un deslizamiento, aún bajo condiciones ideales. Como resultado, el peligro de deslizamiento frecuentemente se presenta como la susceptibilidad a deslizamientos.

Se puede generar un mapa del peligro de deslizamientos de tierra que identifica áreas con diferente potencial para los deslizamientos. La necesidad de información sobre peligros de deslizamientos puede variar de acuerdo con el uso futuro de las tierras.

El grado del peligro de deslizamiento presente es considerado relativo ya que se refiere a la expectativa de ocurrencia de futuros deslizamientos de tierra, en base a las condiciones de esa área particular. Otra área podría parecer similar pero, en realidad, puede tener diferente grado de peligro de deslizamiento debido a pequeñas diferencias en la combinación de las condiciones para los deslizamientos. Es así que la susceptibilidad a deslizamientos es relativa a las condiciones de cada área específica, y no se puede suponer que la susceptibilidad sea idéntica a la de un área que sólo parece ser igual.
3.3 Aspectos Relacionados con Erosión Hídrica

3.3.1 Concepto de erosión hídrica y tipos de erosión

Artezana (2001), identifica dos formas de erosiones principales, estas son, la erosión hídrica y la erosión eólica.

3.3.1.1 Erosión hídrica:

Es producido principalmente por efecto de la lluvia. El impacto de las gotas de agua en el suelo descubierto, ocasiona el desprendimiento de sus partículas y su remoción por agua de escorrentía. Los factores que intervienen en este proceso son:

- La intensidad y frecuencia de las lluvias
- El relieve del terreno
- La longitud de la pendiente
- La cobertura vegetal
- El tipo de suelo
- El manejo del suelo

3.3.1.2 Tipos de erosión hídrica

Según Miranda (1992), citado por Artesana (2001), hay tres formas de erosión hídrica:

Erosión laminar

Es el arrastre uniforme y casi imperceptible de delgadas capas de suelo por el agua de escurrimiento. Es la forma de erosión menos notable y al mismo tiempo la más peligrosa.
Bajo este proceso erosivo, la capa superficial del suelo comienza a mostrar manchas en las pendientes debido a la pérdida de nutrientes minerales y materia orgánica. Es así que se ha estimado que la erosión laminar de 1 cm. de suelo superficial representa la pérdida de 100 m3/ha.

Erosión en surcos

Es la erosión que se presenta como consecuencia de una fuerte erosión laminar y el mal uso de herramientas de labranza. Ocurre cuando el agua de escurrimiento se concentra en lugares del terreno, hasta adquirir volúmenes y velocidades capaces de hacer cortes en el suelo y formar canales o surcos que se destacan. Esta erosión se facilita en terrenos cultivados en el sentido de la pendiente. En pendientes menores al 20%, estos surcos pueden ser borrados con herramientas de labranza evitando que aumente su tamaño hasta formas cárcavas. Los daños de esta forma de erosión revisten también gravedad, sin embargo, por ser más visibles que la erosión laminar el agricultor le presta atención más oportuna.

Erosión en cárcavas

Se produce después de la erosión laminar y en surco. Se forman cuando el agua de escurrimiento es mayor, produciendo surcos que se unen y forman zanjas de gran tamaño, conocidas como cárcavas generalmente ramificadas. Estas zanjas no permiten el empleo de yuntas o maquinarias en la preparación del terreno, ni otros trabajos de campo, tienen en general su origen en las siguientes causas:

- Las depresiones e irregularidades naturales del terreno.
- Mayor intensidad y frecuencia de las lluvias.
- Falta de corrección oportuna de la erosión en surcos.
- Labranza a favor de la pendiente.
- Pisoteo continuo del ganado en praderas sobre pastoreadas.
Bergsma (1998), citado por Artesana (2001), indica que los procesos de erosión dependen de la precipitación, del material, de la posición relativa en el paisaje (sobre flujo y humedad antecedente), de la forma de la pendiente, del uso y manejo del suelo.

3.3.2 Modelos utilizados en la determinación de la erosión hídrica

Según Artesana (2001), la erosión por su distribución espacial y por que las mismas están condicionadas por muchos factores interactuantes, es un proceso que no puede ser medido en forma exacta y de manera sencilla. La estimación de las tasas de erosión se realiza con base a pruebas de campo y modelos que consideran al mundo real como un sistema.

A continuación se muestran los modelos más conocidos para la determinación de la erosión:

3.3.2.1 Nivel medio-bajo de necesidad de datos

- **Cargas por superficie unitaria** (predicción estadística) Aplicación: Pérdida de sedimentos, pérdida de nutrientes. Escala de tiempo: promedios a largo plazo. Escala espacial, decenas a centenares de km². Los modelos estadísticos utilizan datos agregados para situaciones comparables. La capacidad de predicción es baja, pero puede ser útil como medio de detección o en los casos en que no se dispone de datos sobre los campos de cultivo o la escala espacial es tan grande que resulta antieconómico obtenerlos.

- **USLE** (Ecuación universal de pérdida de suelo) Aplicación: Pérdida media de suelo en relación con cultivos específicos, etc. Escala de tiempo: Anual. Escala espacial: Parcela/finca.

- **RUSLE/MUSLE** (USLE revisada/modificada) Aplicación: Pérdida media de suelo en relación con cultivos específicos, etc. Escala de tiempo: Anual.
Escala espacial: Parcela/finca, los modelos empíricos semejantes al USLE se aplican en el análisis de grandes superficies, utilizando, por ejemplo, datos obtenidos con sistemas de teledetección, para elaborar estimaciones regionales de las pérdidas de suelos (por ejemplo, en el Brasil). Estos modelos se incorporan muchas veces en los modelos hidrológicos más detallados que se indican a continuación.

Según Artezana (2001), el RUSLE puede ser usado apropiadamente para:

- Predecir pérdida de suelo promedio a largo plazo de condiciones de campo específicas, usando un sistema específico de manejo.
- Para predecir erosión entre surcos y en surcos, en pasturas, cultivos y sitios en construcción.
- La pérdida de suelo calculado por el modelo, es la cantidad de sedimento perdido por el perfil, no la cantidad de sedimento que deja la cuenca o el terreno.
- El perfil del paisaje es definido por una longitud de la pendiente, la cual es la longitud del origen del flujo superficial hasta el punto donde el flujo alcanza una mayor concentración o una mayor área de deposición como en las pendientes cóncavas y cerca de los límites del terreno.
- Para estimar las tasas de erosión que son removidas del suelo, de partes críticas del paisaje y que guían a la elección de las prácticas de control de la erosión hasta un nivel de pérdida de suelo tolerable.

3.3.2.2 Modelos que requieren gran disponibilidad de datos (orientados hacia el proceso).

- **AGNPS** (contaminación de fuentes agrícolas no localizadas) Aplicación: Hidrología, erosión, N, P y plaguicidas. Escala de tiempo: Suceso aislado, diariamente, continuada. Escala espacial: Cuadrícula, finca

• **SHE** (Sistema hidrológico europeo) Aplicación: Hidrología, con módulos de calidad del agua. Escala de tiempo: Suceso aislado, diaria, continuada. Escala espacial: Cuenca hidrográfica.

4.1. Localización

La microcuenca Las Marías está ubicada al noroeste de la ciudad de Telica, abarca parte de los municipios de Chinandega (27%), Telica (44%), Posoltega (28%) y Quezalguaque (1%) (Ver figura 1). Las principales comunidades que están dentro de la microcuenca corresponde a los poblados de Los Portillos, Las Carpas, Los Mangles y Las Marías entre otros, los cuales se ubican en la parte alta, media y baja de la microcuenca respectivamente, a lo largo de la vía principal.

4.2 Características biofísicas

4.2.1 Acceso

La microcuenca Las Marías tiene un camino de fácil acceso para vehículos en época seca, el cual une a las cuatro comunidades que la conforman, sin embargo, presentan limitantes en la época lluviosa, ya que el camino se convierte en un cauce, el cual se llena hasta cierta altura de agua y arena que viene de las partes altas de la microcuenca (UNA, 2004).
Figura 1: Mapa de ubicación de la microcuenca Las Marías.
4.2.2 Suelos

Los suelos de la microcuenca Las Marías son derivados de cenizas volcánicas recientes y antiguas, además de rocas volcánicas. En su mayoría, Pertenecen al orden Andisol clasificados como Mollic Ustivitrand, además se encuentran áreas denominadas tierras Misceláneas, las cuales ocupan el 49.01% del área de la cuenca (Hernández y Acuña, 2004).

4.2.2.1 Clasificación taxonómica de los suelos.

Los suelos de la microcuenca Las Marías fueron clasificados a nivel de series de suelo, a continuación se mencionan y se describen cada una de ellas (Hernández y Acuña, 2004).

Serie Olocotón (OT):

Los suelos de esta serie descritos por CATASTRO (1971) y clasificados taxonómicamente como Pachic Argiustoll (perteneciente al orden Mollisol), son suelos bien profundos, bien drenados muy oscuros en la superficie y pardo rojizo oscuros, bien estructurados, y arcillosos en los horizontes subsuperficiales. Estos suelos en la parte superficial están derivados de cenizas volcánicos recientes y en la parte subsuperficial de cenizas volcánicas más antiguas. Se encuentran ubicados desde pendientes bajas (< 1%) hasta en pendientes de 15%. El uso actual de estos suelos es con frecuencia sistemas de cultivos anuales y zonas de pastoreo. Esta serie de suelos ocupa un 12.74% del área total de la microcuenca.

Serie de Suelos Malpaisillo (MP):

Los suelos de la serie Malpaisillo según CATASTRO, (1971), fueron clasificados como Mollic Vitrandepts, y consisten en suelos profundos a moderadamente profundos, bien drenados, de texturas moderadamente gruesas derivados de cenizas volcánicas.
Los suelos son oscuros en la superficie y pardo amarillentos en el subsuelo, ubicándose en pendientes suaves hasta onduladas.

El uso actual de estos suelos es con frecuencia sistemas de cultivos anuales y zonas de pastoreo. Esta serie de suelos ocupa un 17.18% del área total de la microcuenca.

Serie de suelos La Mora (LM):

Los suelos de La Mora según CATASTRO (1971), clasificados como Mollic Vitrandepts, consisten en suelos profundos a moderadamente profundos, bien drenados derivados de ceniza volcánica, con textura franca arenosa o más gruesa, se ubican en planicies mas o menos disectadas.

El uso de estos suelos para 1971, era de cultivos anuales, principalmente algodón y maíz a pequeña escala, además de pequeñas áreas de pastos.

Según Hernández y Acuña (2004) estos suelos están poco erosionados en las pendientes mayores al 4%, aunque no se descarta una alta tasa de erosión superficial ya que en la mayoría de los casos están siendo utilizados para el cultivo de maíz y frijoles que son cultivos limpios y no se observa ninguna obra de conservación de suelos y aguas en la mayoría de las áreas ocupadas por esta serie de suelo. Esta serie de suelos ocupa un 9.32% del área total de la microcuenca.

Serie de suelo Las Colinas (Li):

Los suelos de Las Colinas según CATASTRO (1971) citado por Hernández (2004), son clasificados como Mollic Vitrandepts y consisten de suelos algo excesivamente drenados, profundos, oscuros y arenosos que se derivan de cenizas volcánicas y descansan sobre escoría.
Según Hernández y Acuña (2004) esta serie, presentan un grado de erosión moderado debido a que actualmente se están implementando cultivos anuales y no se observa la implementación de obras de conservación de suelo y agua. Esta serie de suelo ocupa un 1.42% del área total de la microcuenca.

Serie Villa Salvadorita (Vs):

Según CATASTRO (1971), los suelos de Villa Salvadorita clasificados como Mollic Vitrandepts y consisten de suelos profundos, bien drenados, pardo grisáceo muy oscuro que se derivan de cenizas volcánicas. Esta serie de suelo ocupa un 0.87% del total del área de la microcuenca.

Serie Argelia (AG):

Según CATASTRO (1971), los suelos de la serie Argelia son clasificados como Mollic Vitrandepts, consiste de suelos profundos, bien drenados, de textura media, derivados de cenizas volcánicas relativamente reciente en la parte superior del perfil y de ceniza volcánica más vieja en la parte inferior del perfil. En la microcuenca Las Marías esta serie ocupa el 0.93% del total del área

Tierras misceláneas (Q):

En la microcuenca Las Marías una gran parte del área esta ocupada por suelos que en 1971 fueron clasificados y agrupados por CATASTRO como Tierras misceláneas (Q), es decir éstas áreas agrupan una gran variabilidad de suelos que por su extensión no pueden ser separados. Estos suelos ocupan un 49.01% del área total de la microcuenca. En la actualidad estos suelos presentan fuertes signos de erosión (erosión en cárcavas) debido principalmente a que están ocupados para cultivos anuales y algunas zonas de pastos. El bosque se ha visto reducido a áreas relativamente pequeñas y ya intervenidas sin ningún tipo de manejo. (Hernández y Acuña, 2004).
Tierras aluviales (TX):

Los suelos aluviales consisten en depósitos de materiales estratificados recientes, lavados de las tierras altas adyacentes de cenizas volcánicas, basaltos, tobas y arenisca, y que son depositados por los ríos en las tierras bajas. Estos suelos se encuentran generalmente en áreas angostas y alargadas y tienen mucha variación en drenaje y textura en distancias cortas. Algunos de los suelos aluviales se encuentran en terrazas bajas. Debido a la falta de uniformidad en los perfiles no se han establecido series. (Hernández y Acuña, 2004).

Las tierras Aluviales en la microcuenca Las Marías ocupan un 1.65 % del total del área de la misma. El restante 4.69% del área de la microcuenca está distribuido entre cárcavas, afloramiento rocoso, y suelos vérticos, los cuales no son considerados por representar áreas muy pequeñas y que no son representativas (Op cit).

4.2.2.2 Uso anterior y actual del suelo en la Microcuenca.

Según UNA (2004), la parte baja de la Microcuenca fue afectada por el monocultivo del algodón (1950-1985), esto obligó a la población campesina a desplazarse hacia las laderas de los cerros, en busca de garantizar la producción de granos básicos. Hoy en día se sigue cultivando (soya, maní, sorgo e importante cantidad de granos básicos) y pastando en áreas de vocación forestal, además de plantaciones forestales en pequeñas áreas para la comercialización de leña.

4.2.3 Vegetación.

El bosque en referencia se considera secundario con alto grado de degradación por las actividades a que se ha sometido, sin embargo existen especies pioneras de la zona que a través de tratamientos silviculturales se espera buena estabilización de la masa boscosa (Op cit).
4.2.4 Geología:

Según Hernández y Acuña (2004), en la microcuenca Las Marías se identifican cuatro tipos de materiales geológicos a partir de los cuales se han originado los suelos estos son:

- **Lava y piroclástico indiferenciado** localizados en la parte alta y media de la microcuenca ocupando un 45.12% del área total.
- **Formación geológica Cuaternario indiferenciado** (consiste materiales residuales depositados por la acción de las corrientes fluviales y por procesos coluviales) ubicado en la parte baja de la microcuenca con un área de 15.44 km\(^2\) que corresponde a un 31.41% del total del área.
- **Piroclásticos volcánicos** ocupando un 17.8% del total del área y lo podemos encontrar en la parte media y alta de la cuenca.
- **Formación geológica Coyol inferior** que consiste de rocas andesiticas y aglomerados, la cual lo encontramos ubicada en la parte baja de la microcuenca ocupando un área de 2.79 km\(^2\) correspondiente a un 5.68% del total.

El material parental más viejo corresponde al grupo Coyol inferior con aproximadamente 13.8 millones de años del período del Mioceno-Plioceno Terciario. El resto de materiales geológicos corresponden al cuaternario reciente o sea son materiales jóvenes con menos de 2 millones de años.

4.2.5 Clima

Según Koppen citado por Hernández y Acuña (2004), la unidad climática que corresponde a la microcuenca es Clima de Sabana Tropical (Aw), predomina en la zona del pacífico. El clima es ardiente con temperaturas medias entre 21°C y 30°C y máximas hasta 41°C, se caracteriza por una estación seca de Noviembre a Abril, y el período lluvioso o también llamada inverno desde Mayo a Octubre, la precipitación anual máxima alcanza 1800 mm y la mínima entre 700 y 800 mm anuales (ver figura 2).
También se identificaron dos zonas de vida según Holdridge, Bosque húmedo Tropical (Bh-T) y Bosque húmedo Sub-tropical (Bh-St),

Bh-T: Lo encontramos localizado en la parte baja y media de la microcuenca, cubriendo la mayor parte de la misma con un 90.76%, presenta temperaturas que van de 24.5 °C hasta 25.5 °C, precipitaciones promedio de 1700 mm anuales y elevaciones que alcanzan los 400 msnm.

Bh-St: Esta zona de vida se encuentra en una pequeña área de la microcuenca cubriendo un 9.23% del área total de la misma, localizado en la parte alta, con elevaciones que van entre los 400 y 820 msnm, temperaturas que alcanzan los 23.5°C y una precipitación promedio anual de 1700 mm.

Figura 2. Precipitación en la microcuenca Las Marías, estación meteorológica Las Marías, 15 años de registro.
4.2.6 Relieve

La microcuenca Las Marías presenta un relieve muy variado, desde plano a ligeramente ondulado, con planicies muy bien diferenciadas; se extiende desde la parte baja 30 msnm, Ojo de agua, hasta su punto más alto 820 msnm, cerro La Pelona, con pendientes que van de 0 hasta 45 %, predominando las pendientes que se encuentran en el rango de 0-2% con un 41.4% del total del área de la cuenca, presenta elevaciones individuales en su parte baja con elevaciones que alcanzan los 240 msnm (Op cit).

4.2.7 Características Morfométricas de la Microcuenca:

Según Hernández y Acuña (2004), las características de la microcuenca Las Marías son las siguientes:

- **Área total de la cuenca**: el área total de la microcuenca las Marías corresponde a 49.16 Km2, convirtiéndola en una microcuenca relativamente pequeña, facilitando la planificación territorial, el uso y manejo de sus recursos naturales y el ordenamiento de la misma.

- **Forma de la cuenca**: La forma de una cuenca influye sobre los escorrentímetros y la respuesta a los eventos lluviosos, así como para la conservación del agua. La microcuenca Las Marías tiene forma Ovalada correspondiendo con la clasificación del coeficiente de Gravelius de 1.29.

- **Pendiente media del cauce principal**: El cauce principal de la microcuenca tiene una pendiente media del 2.61 %, lo cual indica que el río presenta su mayor recorrido en la parte baja de la cuenca.

- **Longitud de cauce**: La longitud del cauce principal para la microcuenca Las Marías corresponde a 15.7 Km.

- **Elevación media de la cuenca**: La microcuenca Las Marías posee una elevación media de 426.5 msnm.

- **Orden de corriente**: El orden de corriente se refiere a la cantidad de ramales o tributarios que desembocan al cauce principal, para Las Marías el orden de
corriente es de 4, lo que indica un grado alto de bifurcación del río, el cual tiene abundantes ramales que drenan al cauce principal.

- **Densidad de drenaje**: La densidad de drenaje nos proporciona información básica para saber la respuesta de la microcuenca a los eventos lluviosos, ya que en una alta densidad de drenaje la cuenca responde rápido a las precipitaciones caídas, con picos de escorrentía altos y avanzados. La densidad de drenaje encontrado en la microcuenca Las Marías es de 3.18 kilómetros de corriente por cada kilómetro cuadrado de la cuenca.

- **Densidad de corriente**: La densidad de corriente para la microcuenca Las Marías es de 3.6 corrientes por cada kilómetro cuadrado de la cuenca.

<table>
<thead>
<tr>
<th>Orden de corriente</th>
<th>N° de corrientes</th>
<th>Longitud de las corrientes (Km.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146</td>
<td>79.48</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>49.21</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>21.22</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6.24</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
<td>156.15</td>
</tr>
</tbody>
</table>

4.3 **Características Socioeconómicas**

4.3.1 *Infraestructura y servicios en las comunidades*

A continuación se describe la infraestructura y los servicios disponibles para cada comunidad en la microcuenca Las Marías (UNA, 2004).
Comunidad Las Carpas:

- No cuentan con Centro de Salud, para atenderse van al centro de Las Marías.
- Tienen escuela desde Pre escolar hasta 6º grado, los estudiantes que concluyen la primaria no tienen posibilidades de asistir a la secundaria en Telica.
- Transporte colectivo privado, es utilizado con tarifa diferenciada para estudiantes y público en general.
- Agua potable en general en la comunidad es directamente bombeada del pozo a las viviendas de los pobladores.
- No tiene acceso a la energía eléctrica, antes del huracán Mitch sí tenían.
- Población de 58 familias, alrededor de 300 personas.
- Líder Comunal: Señora Martha Caballero.

Comunidad de Los Mangles:

- No cuentan con Centro de Salud, para atenderse van al centro de Las Marías.
- Tienen escuela primaria de 1º a 5º grado, el 6º lo realizan en Las Marías.
- Transporte colectivo privado, es utilizado con tarifa diferenciada para estudiantes y público en general.
- Agua potable en general en las casas cerca del camino de acceso. También se auxilian de pozos que bombean del tanque principal.
- El 20% de la población goza de energía eléctrica de uso domiciliar.
- Población de la comunidad está distribuida en 117 familias, con aproximadamente 700 a 750 habitantes.
- Líder Comunal: Luis Acevedo Pérez.

Comunidad Las Marías:

- El Centro de Salud atiende las comunidades del municipio de Telica dentro de la micro cuenca Las Marías.
- Tienen escuela desde Pre escolar hasta 6º grado.
• Transporte colectivo privado, la terminal es en Los Mangles.
• Agua potable proporcionada del pozo que bombean al tanque principal y luego es distribuida a la comunidad. Cuando no hay energía eléctrica no se tiene acceso al sistema de distribución del agua potable.
• Únicamente el 10 % de la población goza de energía eléctrica en sus hogares.
• Población de 57 familias, alrededor de 285 personas
• Líder Comunal: Eugenio Pérez

Niveles de vida en las comunidades de la Micro cuenca Las Marías

A continuación se presentan por comunidad los resultados de la clasificación hecha por la UNA en el año 2004, de la descripción de cada uno de los niveles de vida de 3 informantes claves:

Tabla 2. Resultado de Identificación local de Niveles de vida en la Comunidad Las Carpas, micro cuenca Las Carpas.

<table>
<thead>
<tr>
<th>Nivel de vida</th>
<th>Rangos</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Menos Pobres</td>
<td>0 - 33.33</td>
<td>10</td>
<td>17.24</td>
</tr>
<tr>
<td>2 Moderadamente</td>
<td>33.34 - 67.7</td>
<td>12</td>
<td>20.69</td>
</tr>
<tr>
<td>3 Más pobres</td>
<td>67.8 – 100</td>
<td>36</td>
<td>62.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Tabla 3. Resultado de Identificación local de Niveles de vida en la Comunidad Los Mangles, micro cuenca Los Mangles.

<table>
<thead>
<tr>
<th>Nivel de vida</th>
<th>Rangos</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Menos Pobres</td>
<td>0 - 33.33</td>
<td>14</td>
<td>11.97</td>
</tr>
<tr>
<td>2 Moderadamente</td>
<td>33.34 - 67.7</td>
<td>40</td>
<td>34.19</td>
</tr>
<tr>
<td>3 Más pobres</td>
<td>67.8 - 100</td>
<td>63</td>
<td>53.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Tabla 4. Resultado de Identificación local de Niveles de vida en la Comunidad Las Marías, micro cuenca Las Marías.

<table>
<thead>
<tr>
<th>Nivel de vida</th>
<th>Rangos</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Menos Pobres</td>
<td>0 - 33.33</td>
<td>14</td>
<td>25.00</td>
</tr>
<tr>
<td>2 Moderadamente</td>
<td>33.34 - 67.7</td>
<td>13</td>
<td>23.21</td>
</tr>
<tr>
<td>3 Más pobres</td>
<td>67.8 – 100</td>
<td>29</td>
<td>51.79</td>
</tr>
</tbody>
</table>

Las actividades económicas principales corresponden a la agricultura y la ganadería. Los cultivos principales son los granos básicos: fríjol, maíz, sorgo y soja. En el rubro ganadero predomina la producción de leche y cuajada.

4.4 Metodología Temática del Cálculo de Perdida de suelo

Para el cálculo de la pérdida de suelo existen una serie de métodos, en este trabajo se decidió aplicar la Ecuación Universal de Pérdida de Suelos (EUPS) ideado por Wischmeier y Smith (1978). A pesar de que este método no tiene la precisión de otros modelos existentes, cuando se trabaja a nivel de cuencas, es el que mejor se adapta a un análisis a nivel de la escala utilizada y fundamentalmente por que recoge los principales parámetros físicos causantes de la erosión hídrica y presenta una menor complejidad en su aplicación (Mendoza y Gutiérrez, 2002).

La EUPS tiene la siguiente expresión matemática compuesta de 6 (seis) factores que representan la cantidad de suelo perdido por unidad de superficie y unidad de tiempo, que a continuación sigue.

\[A = R \times K \times LS \times C \times P \]

Donde:
\(A \) = Pérdida de suelo promedio anual en [t/ha/año].
\(R \) = Factor Erosividad de las lluvias en [MJ/ha*mm/hr].
\(K \) = Factor Erodabilidad del suelo en \([t/haMJ*ha/mm*hr]\).
\(LS \) = Factor topográfico (función de longitud-inclinación-forma de la pendiente), adimensional.
\(C \) = Factor ordenación de los cultivos (cubierta vegetal), adimensional.
\(P \) = Factor de prácticas de conservación (conservación de la estructura del suelo), adimensional.

Cabe señalar que en este trabajo no hicimos uso del factor “\(P \)” ya que no existía en el área ningún sistema de conservación de suelo, según observaciones y datos recolectados directamente en la zona de estudio, por lo tanto este factor obtiene un valor de 1 dentro de la fórmula.

Según Wischmeier y Smith (1978), el valor de pérdida de suelo (\(A \)) obtenido y expresado en ton/ha/año en el sistema internacional, es un indicador ambiental de extrema utilidad, ya que permite comparar diferentes zonas y realizar estudios temporales dentro de una zona determinada, y en definitiva, predecir y conocer la evolución del fenómeno de la erosión hídrica.

Para este cálculo se distinguen dos tipos de información que dependen de su evolución en el tiempo; por una parte, la información sin variación (estática) que son las correspondientes al relieve del terreno (\(LS \)) y la que describe las características de los suelos (\(K \)), ya que sus dinámicas temporales son lo suficientemente lentas como para experimentar cambios considerables en períodos más o menos cortos de tiempo. Por otra parte, la información meteorológica (\(R \)) y la de usos y coberturas vegetales del suelo (\(C \)), que son consideradas como dinámicos en el tiempo, especialmente la primera, que presenta cambios temporales y espaciales muy frecuentes.

4.4.1 **Calculo del Factor R** (Factor Erosividad de las lluvias)

Este factor se define como la suma del producto de la energía cinética total y la intensidad máxima en treinta minutos por evento y presenta un doble efecto. Por un
lado, produce desprendimientos de partículas de suelo debido al impacto de las gotas de lluvia, y por otra parte, produce el taponamiento de los poros del suelo que incide en el incremento de la escorrentía y por tanto, en la erosión. A este producto también se le conoce como Índice de Riesgo de Erosión.

En principio para el cálculo del “factor R” se iba a utilizar datos de intensidad de precipitación (30 minutos), según las estaciones meteorológicas que el INETER tiene en zona aledaña a la microcuenca Las Marías, utilizando las que se encontraran más próximas al área de estudio, como son la estación meteorológica Las Marías, la Villa 15 de Julio y Posoltega, pero la información que estas tenían eran datos de precipitación mensual. Debido a la falta de datos de intensidad de lluvia, tuvimos que trabajar con la información que actualmente había disponible. Para el cálculo de R se utilizó la precipitación de media mensual de los años de 1969 al 2004 respectivamente para todos los meses de los años antes mencionados (ver anexo D).

El cálculo de R viene a estar dado por la siguiente fórmula:

\[
R = ET \times I_{30} \times 0.001
\]

Donde:
- \(R \) = Factor de Erosividad de la lluvia y escorrentimiento, en Mj/ha/año
- \(ET \) = Energía cinética total
- \(I_{30} \) = Intensidad de lluvia medida en 30 minutos

Para este trabajo se utilizaron datos de precipitación de media mensuales en el cual se tomaron intensidades con una duración de 24 horas (mm/mes) de las estaciones antes mencionadas, basándose en la ecuación planteada por la Red de Información Ambiental de la Consejería del Medio Ambiente de España (2005).
\[E_{24h} = \sum_{K=1}^{p} \ldots = (0.119 + 0.0873 \times \log_{10}(I_{24h})_K)(\Delta V_{24h})_K \]

Siendo:
\(E_{24h} \) = la energía cinética total de la lluvia calculada mediante intervalos de medida de 24 horas.
\((I_{24h})_K \) = la intensidad diaria de la lluvia, en mm/h.
\(\Delta V_k \) = la cantidad de lluvia caída durante un día, en mm.

Los resultados del cálculo del factor R se muestran en la tabla 10 para la estación meteorológica Las Marías, Posoltega y Villa 15 de Julio.

La espacialización de este factor se hizo por series de suelos usando el parámetro intensidad de lluvia para lo cual se utilizaron las intensidades calculadas para las estaciones Las Marías, Villa 15 de Julio y Posoltega, por consiguiente los valores de R calculados para cada una de estas estaciones fueron incluidos en cada una de las series de suelo de mayor influencia para cada estación, obteniendo así tres áreas homogéneas con valores distintos de R. (Ver Mapa 4 del anexo A)

4.4.2 Calculo del Factor k (Erodabilidad del Suelo)

Este factor representa la susceptibilidad del suelo a la erosión hídrica. Su valor depende de la materia orgánica presente en el suelo, textura superficial, estructura y permeabilidad, siendo su medición muy costosa y complicada. Un grupo de investigadores conformado por Barnett, Diseker, Richardson y Rogers (1966), citado por Mendoza y Gutiérrez (2002) desarrollaron la siguiente expresión para estimar el factor K:

\[K = \frac{2 \times M^{1.14} \times 10^{-4} \times (12-a)+3.25 \times (b-2)+2.5 \times (c-3)}{100} \]
Donde:

\[K = \text{Factor de Erodabilidad del suelo, en ton/ha} \]

\[M = \text{Tamaño de la partícula} = (\%\text{limo} + \%\text{arena}) \times 100 - \%\text{arcilla} \]

\[a = \% \text{ de Materia orgánica} \]

\[b = \text{Estructura del suelo: código que está en función de la estructura del suelo} \]

- 1 = Granular muy fina
- 2 = Granular fina
- 3 = Granular media a gruesa
- 4 = Masiva o de bloque

\[c = \text{Clase de permeabilidad del perfil} \]

- 1 = Rápida
- 2 = Moderada a rápida
- 3 = Moderada
- 4 = Moderada a lenta
- 5 = Lenta
- 6 = Muy lenta

Luego de haber hecho los cálculos del factor \(K \) los resultados de este se multiplican por 1.292 que equivale a la condición de parcela estándar (22.13 m y 9 \% de pendiente). El objeto de esta operación es llevar los resultados al sistema métrico (metros) para que sea de fácil entendimiento con unidades ya definidas (Mendoza y Gutiérrez, 2002).

En el cálculo del factor \(K \) se utilizaron unidades de fisiográfica y de suelos tomando en cuenta de forma más detallada las series de suelo y el perfil representativo de las series La Mora, Malpaisillo, Olocotón, Tierra misceláneas, los cuales se obtuvieron valores de \(K \) que luego le fueron asignados.
Los resultados del cálculo de K se observa en la tabla 11 y su espacialización en el mapa 2 del anexo A.

4.4.3 **Cálculo del Factor L y S** (Factor topográfico, función de longitud-inclinación-forma de la pendiente, adimensional)

Según Mendoza y Gutiérrez (2002), los valores de LS se calculan con base a los valores de longitud de la pendiente (L) y el grado de pendiente (S). Para el caso de la longitud L, se define como la distancia desde el punto de origen de escurrimiento hasta el punto donde decrece la pendiente al grado de que se presente sedimentación de suelo erosionado, o bien, hasta el punto donde el escurrimiento encuentra un canal de salida bien definido. Por su parte, el grado de erosión también depende de la pendiente, por lo que con relación a una parcela de 22.3 m de longitud ambos factores se pueden unir en uno solo a través de la ecuación adimensional la cual es la siguiente:

\[
LS = \left(\frac{x}{22.13} \right)^m \left(0.065 + 0.045 s + 0.0065 s^2 \right)
\]

Donde:

- \(x \) = longitud de la pendiente, en m
- \(m \) = exponente que depende del grado de pendiente
- \(s \) = pendiente del terreno, en %

Según revisiones bibliográficas para el cálculo de estos factores se han realizado algunos ajustes, todo esto debido a que la ecuación de Wischmeier y Smith, no considera rangos de pendientes mayores que el 10 %. Para el caso presente, se estimó el factor LS a través de interacciones sobre el MDT. (Mendoza, y Gutiérrez, 2002).
Foster y Wischmeier (1974) citado por Montes, (2000), indica que esta ecuación funciona correctamente cuando las pendientes son aisladas y uniformes. Cuando este no es el caso, el cálculo debe hacerse por segmentos a través de la expresión:

\[LS = \sum_{j=1}^{N} \frac{S_j \lambda_{j+1} - S_j \lambda_{j-1}}{(\lambda_j - \lambda_{j-1})(22.13)^m} \]

Donde

- \(S_j \) factor de pendiente para el segmento \(j \), en m/m
- \(\lambda_j \) Distancia desde la frontera inferior del segmento \(j \) hasta la frontera aguas.

En este estudio el cálculo del factor LS se hizo mediante el uso de la extensión RUSLE. LS, en donde se calcula los valores de LS a partir del modelo digital de elevaciones (MDE). Esta extensión realiza de forma rápida varios pasos que incluyen los cálculos de coberturas de dirección de flujo, acumulación de flujo, factor L y factor S. Los resultados de este factor se muestran espacializados en el mapa 3 del anexo A.

4.4.4 Calculo del Factor C (Factor ordenación de los cultivos (cubierta vegetal), adimensional)

Según Rodríguez, (1995), para este factor el aspecto protector de la vegetación se ha puesto de relieve en la **Ecuación Universal de Pérdidas de Suelo** mediante su cuantificación en un factor "C", denominado de protección de la cubierta vegetal. Los valores referenciales del índice de factor de uso y manejo del suelo que puede tomar variarán en función de la clase y calidad de esta cobertura, oscilando sus valores desde un mínimo del 0,001 para las cubiertas forestales más densas (bosque no intervenido) hasta un valor de 1 para el suelo desnudo.

Los valores que puede tomar el factor C presentan una alta variabilidad, fruto tanto de las facilidades transformación de la cubierta vegetal como de sus distintas
fases de desarrollo. En las zonas de vegetación natural C, se mantiene relativamente constante durante todo el año en contraposición de lo que ocurre en las tierras dedicadas a uso agrícola. Es en esta última situación cuando el cálculo del factor C se hace más complicado puesto que dependerá de los niveles de protección que ofrezcan las diferentes alternativas de cultivo, de la distribución local de las precipitaciones, de los niveles de productividad de los cultivos, de las distintas fases de desarrollo de éstos, de las prácticas de cultivo y del manejo de los residuos después de la cosecha.

En la asignación de valores de C a las zonas agrícolas se han tenido en cuenta los valores promedio recogidos en Capacidad de Usos y Erosión de los Suelos (Moreira, 1990), para las áreas de vegetación natural se han empleado los valores propuestos por el U.S. Soil Conservation Service para pastizales, matorrales, arbustos y bosques. Ver tabla 7

<table>
<thead>
<tr>
<th>Tipos de Uso del terreno</th>
<th>Ejemplos</th>
<th>Rango de valores de C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetación permanente</td>
<td>Bosques protegidos, Llanura, Pastoreo permanente, Pradera permanente</td>
<td>0.0001 – 0.45</td>
</tr>
<tr>
<td>Praderas establecidas</td>
<td>Alfalfa, Trébol, Cañuela</td>
<td>0.004 – 0.3</td>
</tr>
<tr>
<td>Granos pequeños</td>
<td>Centeno, Trigo, Cebada, Avena</td>
<td>0.07 – 0.5</td>
</tr>
<tr>
<td>Legumbres de semillas grandes</td>
<td>Soya, Garbanzo, Maní</td>
<td>0.1 – 0.65</td>
</tr>
<tr>
<td>Cultivos de hilera</td>
<td>Algodón, Papas, Tabaco, Verduras, Maíz, Sorgo</td>
<td>0.1 – 0.7</td>
</tr>
<tr>
<td>Barbecho</td>
<td>Barbecho de verano, Período entre el arado y el crecimiento del cultivo</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fuente: Service Conservation Soil (SCS)

Los resultados del cálculo del factor C se muestran en la tabla 12, y su espacialización en el mapa 1 del anexo A.
4.4.5 Diseño en sistemas de información geográfica

4.4.5.1 Modelo conceptual

Una vez que hemos analizado y logrado entender el concepto de la erosión actual se procedió a la realización de un modelo conceptual que incluye los factores como (Precipitación, Fisiográfica, Topografía, Cobertura y uso de Suelos). Los cuales, se utilizaron para la determinación y predicción del fenómeno de erosión hídrica actual en toda la Microcuenca las Marías donde se le dieron las entidades y sus respectivos atributos. El modelo conceptual que se generó y se empleó fue el siguiente (ver figura 3).

Figura 3. Modelo conceptual para predicción de Erosión Hídrica Actual de la microcuenca Las Marías, Telica, León (Mendoza y Gutiérrez, 2002).
4.5 Metodología para la evaluación de Amenaza de Ocurrencia de Deslizamiento.

4.5.1 Metodología temática

La metodología utilizada para la determinación del mapa de riesgo de ocurrencia de deslizamiento se basó en el método Heurístico, el cual consiste en la combinación de mapas temáticos calificados, con la ayuda de la herramienta SIG, (Ruiz y Molina, 2001).

La evaluación de amenazas naturales se facilita por medio de la utilización de un SIG, por cuanto se maneja información geográfica, atributos distribuidos espacialmente o ambos. Por medio del SIG es posible obtener la zonificación de amenazas para una condición particular y modelar diferentes escenarios por medio del análisis y modelamiento de los parámetros involucrados, de tal manera que se pueda llegar a predecir los cambios en la zonificación de amenazas con la variación de uno o varios de los parámetros incluidos (Cheng, et al, 1992 citado por Ruiz y Molina, 2001).

4.5.2 Descripción metodológica para la obtención del mapa de amenaza relativa de ocurrencia de fenómenos de deslizamientos de tierra.

El procedimiento para la obtención del mapa de amenaza relativa de ocurrencia de deslizamiento está dividido en dos partes, la primera encaminada a obtener el mapa de susceptibilidad o factores intrínsecos a la generación de fenómenos de deslizamientos de tierra, en donde se involucra información geológica, de pendiente y de drenaje y la segunda encaminada a obtener un mapa de factores extrínsecos que son contribuyentes o detonantes, en donde se tiene en cuenta el uso potencial y el actual del suelo (conflicto de uso), el clima y la erosión.

Mediante la superposición de estos dos mapas se obtiene el producto final que es el mapa de amenaza relativa por fenómenos de deslizamiento de tierra, en donde la
susceptibilidad a la generación de fenómenos de remoción en masa se clasifica en cinco niveles de acuerdo a la tabla 6, en donde el nivel 1 es el más bajo y el nivel 5 el más alto.

Tabla 6: Definición de los niveles de susceptibilidad a deslizamientos de tierra

<table>
<thead>
<tr>
<th>Niveles de Susceptibilidad</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Bajo</td>
<td>1</td>
</tr>
<tr>
<td>Bajo</td>
<td>2</td>
</tr>
<tr>
<td>Moderado</td>
<td>3</td>
</tr>
<tr>
<td>Alto</td>
<td>4</td>
</tr>
<tr>
<td>Muy Alto</td>
<td>5</td>
</tr>
</tbody>
</table>

Con base en esta tabla se calificó cada una de las unidades litológicas afectadas por fracturamiento, las diferentes pendientes que se presentan en la microcuenca y los diferentes grados de densidad de drenaje obtenidos en mapas intermedios.

La calificación de la densidad de drenaje es inversa a la utilizada para el caso de la geología y las pendientes, por cuanto a mayor densidad de drenaje menor es la susceptibilidad de ocurrencia de fenómenos de deslizamientos de tierra y mientras menor sea la densidad de drenaje mayor será la susceptibilidad de ocurrencia de fenómenos de deslizamientos de tierra, según se muestra en la tabla 7.

Mientras que a mayor densidad de fracturamiento de los materiales y a mayor pendiente es mayor la susceptibilidad de ocurrencia de fenómenos de deslizamientos de tierra.
Tabla 7: Calificación por susceptibilidad a deslizamientos de tierra en función de la densidad de drenaje

<table>
<thead>
<tr>
<th>Niveles de Susceptibilidad</th>
<th>Intervalo m/Km²</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Bajo</td>
<td>0-0.00009</td>
<td>5</td>
</tr>
<tr>
<td>Bajo</td>
<td>0.0001-2249</td>
<td>4</td>
</tr>
<tr>
<td>Moderado</td>
<td>2250-3439</td>
<td>3</td>
</tr>
<tr>
<td>Alto</td>
<td>3440-4864</td>
<td>2</td>
</tr>
<tr>
<td>Muy Alto</td>
<td>> 4865</td>
<td>1</td>
</tr>
</tbody>
</table>

4.5.2.1 Mapa de Susceptibilidad a Deslizamiento de los Factores intrínsecos

Este se obtiene mediante la superposición de los mapas de litología afectada por fracturamiento, densidad de drenaje y el mapa de pendientes.

4.5.2.1.1 Mapa de litología afectada por fracturamiento

Este mapa se obtuvo mediante la superposición del mapa de densidad de estructura o fallas y el mapa de unidades litológicas. El mapa de litología afectada por fracturamiento fue calificado de acuerdo a la influencia de las fallas por unidades litológicas con sus niveles de susceptibilidad a deslizamientos, de manera que los valores más altos corresponden a la litología más inestable y con mayor densidad de estructuras o fallas, obteniendo así un mapa de litología afectada por fracturamiento con cinco niveles de susceptibilidad a generar deslizamientos. (Ver mapa 4 del anexo B).

El mapa de densidad estructural o fallas

El mapa de fallas geológicas de la microcuenca Las Marías se originaron de los mapas geológicos nacionales del CATASTRO, 1971. El mapa de densidad estructural se generó mediante la división del área de la microcuenca Las Marías en unidades más pequeñas o microcuenas y mediante el cálculo de la densidad estructural en cada una de estas unidades, se obtuvo el mapa de densidad estructural.
El cálculo de la densidad estructural se hizo mediante la siguiente fórmula:

\[De = \frac{Le}{A}, \text{ donde:} \]

\[De = \text{Densidad estructural de la unidad o microcuenca} \]
\[Le = \text{Longitud total de todas las estructuras o fallas que se encuentran dentro de la unidad o microcuenca.} \]
\[A = \text{Área total de la unidad o microcuenca} \]

Esto permitió obtener un mapa con tres niveles de susceptibilidad de ocurrencia de deslizamiento por densidad de estructuras en donde la unidad con mayor densidad de estructuras será la de mayor susceptibilidad. (Ver mapa 3 del anexo B).

Mapa de unidades litológicas

La litología superficial de la microcuenca se obtuvo de los mapas geológicos nacionales de CATASTRO, (1971). Estas unidades litológicas fueron calificadas de acuerdo a las características físicas de las formaciones geológicas, principalmente su permeabilidad de manera que la unidad litológica que presente mayor inestabilidad será la más susceptible a ocasionar deslizamientos. Se obtuvo un mapa de unidades litológicas con tres niveles de susceptibilidad a que ocurran deslizamientos (Ver mapa 2 del anexo B).

4.5.2.1.2 Mapa de densidad de drenaje

La red de drenaje se obtiene de los mapas topográficos y del análisis de los espaciomapas. El mapa de densidad de drenaje se generó con la división del área de la microcuenca Las Marías en unidades más pequeñas o microcuencas, para luego calcular la densidad drenaje en cada una de estas unidades.
El cálculo de la densidad drenaje se hizo a través la siguiente fórmula:

\[Dd = \frac{Lc}{A}, \text{ donde:} \]

- \(Dd = \text{Densidad drenaje de la unidad o microcuenca} \)
- \(Lc = \text{Longitud total de todas las corrientes que se encuentran dentro de la unidad o microcuenca} \)
- \(A = \text{Área total de la unidad o microcuenca} \)

Esto permitió obtener un mapa con tres niveles de susceptibilidad de ocurrencia de deslizamiento por densidad de drenaje, en donde la unidad con menor densidad de drenaje es la más susceptible a sufrir deslizamiento (Ver mapa 1 del anexo B).

4.5.2.1.3 Mapa de pendientes

El mapa de pendientes se generó a partir del modelo digital del terreno (MDT) el cual fue generado del mapa topográfico a escala 1:50,000 del INETER con curvas de nivel cada 20 m y se calificó usando la siguiente escala.

<table>
<thead>
<tr>
<th>Letra</th>
<th>Intervalo (%)</th>
<th>Forma del terreno</th>
<th>Nivel de susceptibilidad</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-2</td>
<td>Plano casi plano</td>
<td>Muy bajo</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2-4</td>
<td>Suavemente inclinado</td>
<td>Bajo</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>4-8</td>
<td>Inclinado</td>
<td>Moderado</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>8-15</td>
<td>Moderadamente escarpado</td>
<td>Moderado</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>15-30</td>
<td>Escarpado</td>
<td>Alto</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>30-45</td>
<td>Muy escarpado</td>
<td>Muy alto</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>>45</td>
<td>Extremadamente escarpado</td>
<td>Muy alto</td>
<td>5</td>
</tr>
</tbody>
</table>
El mapa de pendientes generado contiene cinco niveles de susceptibilidad, en donde el valor más alto corresponde a las pendientes mayores del 15%. (Ver mapa 5 del anexo B).

4.5.2.2 Mapa de Factores Detonantes o Extrínsecos

Este mapa se obtiene mediante la superposición de los mapas de conflicto de uso del suelo, erosión actual y clima. Cada una de estas coberturas es calificada según la tabla 9.

<table>
<thead>
<tr>
<th>Niveles de Susceptibilidad</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Bajo</td>
<td>1</td>
</tr>
<tr>
<td>Bajo</td>
<td>2</td>
</tr>
<tr>
<td>Moderado</td>
<td>3</td>
</tr>
<tr>
<td>Alto</td>
<td>4</td>
</tr>
<tr>
<td>Muy Alto</td>
<td>5</td>
</tr>
</tbody>
</table>

4.5.2.2.1 Mapa de erosión actual

El mapa de erosión es generado mediante el uso de la Ecuación Universal de Pérdida de Suelo (EUPS), Wischmeier y Smith (1978). El grado de erosión es considerado como un factor detonante o contribuyente a la ocurrencia de fenómenos de deslizamientos. Sin embargo, los valores de erosión son calificados de forma inversa al grado de erosión existente, asignándole un valor de 5 para aquellas áreas que presentan un nivel muy bajo de erosión y 1 para aquellas que presentan un nivel muy alto de erosión. Una vez calificado se obtiene un mapa de erosión con cinco niveles de susceptibilidad a provocar deslizamientos. (Ver mapa 2 del anexo C).
4.5.2.2.2 Mapa de conflicto de uso del suelo

El mapa de conflicto de uso del suelo es generado de la superposición del mapa de uso actual del suelo y el mapa de uso potencial del suelo. El resultado es un mapa de conflicto que refleja el buen o mal uso del suelo. El grado de susceptibilidad a los deslizamientos de tierra es calificado de la siguiente manera:

(1) conflicto muy bajo, cuando el uso actual corresponde con la capacidad de uso de la tierra o uso potencial,
(2) conflicto bajo, cuando el tipo de suelo puede llegar a tener este uso potencial pero con algunas limitaciones,
(3) conflicto medio, el uso potencial del suelo presenta limitaciones marcadas para el uso o usos que se estén practicando,
(4) conflicto alto, cuando se está cultivando tierras cuyo potencial no es agrícola (por ejemplo clase VI) y que más bien lo que debería de tener la tierra es cubierta vegetal protectora o áreas boscosas manejadas,
(5) conflicto muy alto, cuando las tierras son muy escarpadas y se practica agricultura, estas tierras deberían ser áreas de protección o bosques sin intervenir.

De esta manera entre mayor sea el conflicto de la tierra definido mayor será la susceptibilidad a que se presenten fenómenos de deslizamientos de tierra. Los diferentes niveles de conflictos de la tierra es una calificación de la intervención del hombre sobre el paisaje y puede ser traducido en factor detonante de tipo antrópico. (Ver mapa 1 del anexo C)

4.5.2.2.3 Mapa de clima

El mapa de clima también es calificado de acuerdo al nivel de amenaza por inestabilidad, considerando al clima seco como el nivel de amenaza más bajo por cuanto se presenta menor precipitación y se incrementa el nivel de amenaza hasta calificar al clima húmedo como el nivel de amenaza más alto. (Ver mapa 3 del anexo C).
4.5.2.3 Diseño en Sistemas de Información Geográfica (SIG)

Una vez descrito cada uno de los aspectos que encierra el procedimiento metodológico para obtener un mapa de amenaza relativa por deslizamiento, se procede a establecer el diseño mediante el cual será procesado a través del uso de SIG.

4.5.2.3.1 Modelo Conceptual

Para obtener el mapa de ocurrencia de deslizamiento se procedió primeramente a definir las entidades necesarias; en la microcuenca Las Marías se identificaron las siguientes: Microcuenca, Relieve, Drenaje, Clima, Geología, Suelo, Uso actual y Cobertura y Fenómenos de remoción en masa, una vez analizadas las relaciones entre estas se procedió a elaboración de un modelo conceptual (Ver figura 4).

Esta metodología considera como otra entidad causante de deslizamiento a las vías o carreteras existentes; sin embargo en la microcuenca Las Marías no existe urbanismo ni infraestructura vial por lo tanto no se consideró en el modelo ya que las vías existentes no representan un elemento que pueda ocasionar deslizamiento en la microcuenca.
Figura 4: Modelo Conceptual para la Predicción de Deslizamientos de Tierras en la Microcuenca Las Marías, Telica, León.
4.6 Materiales Utilizados

4.6.1 Equipos utilizados

- Navegador de GPS
- Cinta Métrica
- Clinómetro de SUUNTO
- Hojas Topográficas de la microcuenca Las Marías.
- Computadora

4.6.2 Programas

- ArcView 3.2®
- Extensiones de ArcView 3.2: Spatial Analyst, Image Analyst, 3D Analyst, RUSLE LS, Hydrologic Modeling 1.1®
V RESULTADOS Y DISCUSIÓN

Los resultados obtenidos del mapa de amenaza relativa por fenómenos de deslizamientos nos demuestran como afecta la intervención de hombre en el medio natural que trae consigo la ocurrencia de estos fenómenos, en donde las características propias de la microcuenca en este caso, como son la geología, la pendiente y el drenaje vienen a ser activadas por factores externos como el mal uso de los suelos, la erosión y el clima.

Lo anterior es comprobado en las áreas mas frecuentemente amenazadas en la microcuenca, correspondientes a laderas deforestadas sometidas a la agricultura de cultivos limpios, litología poco permeable, inclusive en áreas de cenizas volcánicas muy permeables, sitios con mayor densidad de fracturamiento y bajos niveles de erosión.

A continuación se detallan los análisis de los factores intrínsecos, los factores extrínsecos y el mapa de amenaza relativa por fenómenos de deslizamientos de tierra.

5.1 Análisis de los Factores Intrínsecos

En el mapa de factores intrínsecos (Ver Figura 5) se aprecian cinco niveles de susceptibilidad a generar deslizamientos, en estos se puede ver que los niveles de muy baja y baja susceptibilidad, cubren el 29.58 % y el 19.04 % respectivamente corresponden a áreas de poca pendiente, alta densidad de drenaje y litología menos fracturada, aunque en la parte suroeste de la microcuenca se encuentra altamente fracturada, seguimos encontrando valores de baja susceptibilidad a deslizamientos debido a que en esa área existe la densidad de drenaje mas alta de la microcuenca y pendientes planas, lo que le da un efecto compensativo de susceptibilidad.

El nivel de moderada susceptibilidad cubre un área de 23.53% de la microcuenca y el nivel de alta susceptibilidad que cubre el 29.09 % del área total de la microcuenca,
constituyen niveles muy importantes ya que sus valores de susceptibilidad no dejan de ser significativos debido a que el área que cubren corresponden a las mayores pendientes de la microcuenca y las litologías más fracturadas.

Sin embargo, en estas áreas no se concentra ninguna población, por tanto de sucederse un eventual deslizamiento no constituye una amenaza potencial para los comunitarios de la microcuenca, y quizás solo se consideren pérdidas de cosechas.

El que cubre menor área es el de muy alta susceptibilidad (4.76%), a pesar de que este valor cubre una pequeña área de la microcuenca. Es notable que se concentre casi la mayor parte del área en el cerro Lomas de Ojo de Agua, el cual se atribuye a una zona donde coinciden las pendientes mayores de 15%, la litología más inestable y una baja densidad de drenaje.

Por otro lado, en esta área se encuentran las comunidades Pozo Viejo y Ojo de Agua ubicadas en las faldas del cerro en el área considerada para este estudio como de mayor vulnerabilidad a sufrir deslizamientos de tierra.
Figura 5: Mapa de factores intrínsecos de la microcuenca Las Marías, Telica, León.
5.2 Análisis del mapa de la Erosión Hídrica

En el mapa de erosión (Figura 6), se pueden apreciar cinco niveles de erosión en donde los valores de cada uno de estos niveles se justifican de la siguiente manera:

Los valores de los niveles de erosión severa (3.42 %) y niveles de erosión muy severa (2.09 %), constituyen las menores áreas de la microcuenca y son debidas particularmente a los valores altos de longitud y gradiente de pendiente (mapa 3 del anexo A), ya que en este nivel de erosión se encuentran pendientes mayores del 20%.

El nivel de erosión moderada (7.01%), tuvo influencia del factor LS. Sin embargo, los valores de erosividad de la lluvia o factor R (tabla 10) contribuyeron marcadamente en este nivel es decir que el área que cubre este nivel ha sido mayormente erosionada por la energía cinética de lluvia y su intensidad.

El nivel de erosión ligera (33.71 %), tuvo influencia marcada por el factor LS, pero a su vez los valores altos asignados al uso actual del suelo o factor C (tabla 12) que se corresponden con áreas con prácticas agrícolas y los valores del factor K (tabla 11), que nos indican que en esas áreas el suelo presenta muy poca resistencia ante la erosión contribuyeron significativamente en este resultado. El nivel más bajo de erosión (53.77 %) comprende la mayor área de la microcuenca y esta mayormente reflejado en los valores bajos del factor LS y del factor K.

Los niveles de erosión obtenidos son muy importantes para este trabajo debido a que la mayor parte de la microcuenca Las Marías no presenta niveles de erosión extremadamente altos, por consiguiente la amenaza de ocurrencia de deslizamiento debida a esta cobertura viene a ser mayor por la existencia de suficiente material que puede sufrir deslizamientos.
La erosión hídrica actual que presenta la microcuenca demuestra que esta no se encuentra deteriorada según la condiciones de uso de la tierra. Sin embargo, se puede apreciar en el campo grandes sistemas de cárcavas, lo que evidencia que estos valores de erosión podrían incrementarse en la medida que no se consideren prácticas adecuadas de cultivo.

La erosión es uno de los factores extrínsecos o detonantes que puede contribuir significativamente a producir deslizamientos de tierra. Este parámetro actúa de manera inversa a la calificación de los niveles de amenaza de deslizamientos de tierra, esto es porque el fenómeno de la erosión causa que el suelo se pierda con el agua de escorrentío durante un evento lluvioso, por lo tanto, la mayor amenaza de deslizamientos de tierra va a ser para aquellas áreas en donde existe suficiente material (suelo) que pueda deslizarse, es decir aquellas áreas que presentan niveles de erosión ligera y moderada.

La erosión se reclasificó en cinco niveles de amenaza, en donde a menor erosión mayor será la amenaza y a medida que aumente el nivel de erosión menor será la amenaza (Ver mapa 2 en el anexo C), luego el mapa resultante se superpuso con las demás coberturas para generar el mapa de factores extrínsecos.

A continuación se muestran los resultados de los cálculos realizados para cada uno de los factores que integran la Ecuación Universal de Pérdida de Suelo y que fueron utilizados para la generación del mapa de Erosión Hídrica.
Tabla 10: Valor del factor R para las estaciones meteorológicas Posoltega, Las Marías y Villa 15 de Julio.

<table>
<thead>
<tr>
<th>Estaciones meteorológicas</th>
<th>Valor de R (Mj/ha/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posoltega</td>
<td>28.48</td>
</tr>
<tr>
<td>Las Marías</td>
<td>30.94</td>
</tr>
<tr>
<td>Villa 15 de Julio</td>
<td>11.85</td>
</tr>
</tbody>
</table>

Tabla 11. Estimación del factor K de la EUPS

<table>
<thead>
<tr>
<th>Unidad Fisiográfica</th>
<th>Perfil representativo</th>
<th>Textura</th>
<th>% M.O.</th>
<th>Estructura Clase</th>
<th>Permeabilidad</th>
<th>K'</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>A</td>
<td>Fa: Franco Arcillosas</td>
<td>Alta</td>
<td>Bloques angulares y sub. angulares medios moderados</td>
<td>Media</td>
<td>1.20</td>
</tr>
<tr>
<td>OT</td>
<td>A1</td>
<td>FA: Franco Gruesas</td>
<td>Alta</td>
<td>Bloques angulares y sub. angulares medios moderados</td>
<td>Media</td>
<td>0.90</td>
</tr>
<tr>
<td>Q</td>
<td>A1</td>
<td>F: Franco Finas</td>
<td>Alta</td>
<td>Granular</td>
<td>Rápida</td>
<td>0.98</td>
</tr>
<tr>
<td>LM</td>
<td>A1</td>
<td>Fa: Franco Arcillosas</td>
<td>Alta</td>
<td>Granular</td>
<td>Rápida</td>
<td>1.04</td>
</tr>
<tr>
<td>Grupo de Vegetación</td>
<td>Subgrupo de Vegetación</td>
<td>Factor C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Árboles</td>
<td>Árboles dispersos + pastos y cultivos</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>Bosque denso</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>Bosque ralo</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>Bosque ralo + pasto natural</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque</td>
<td>Bosque secundario denso</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suelo desnudo</td>
<td>Lecho del río(cárcava)</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasto</td>
<td>Pastos + árboles dispersos</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivos</td>
<td>Sistema de cultivos anuales</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para el caso del factor LS, que fue calculado usando la extensión RUSLE LS, se muestran los rangos de sus valores en el mapa 3 del anexo A.
Figura 6: Mapa de Erosión de la microcuenca Las Marías, Telica, León.
5.3 Análisis de los Factores Extrínsecos

Los resultados obtenidos del mapa de factores extrínsecos o factores detonantes (Figura 9) demuestran como la presencia humana y las actividades que realiza, provoca un cambio en el entorno natural con grandes consecuencias, esto se manifiesta en los valores de alta y muy alta amenaza de deslizamientos, que corresponden al 35.85 % y el 16.87 % del área de la microcuenca. Estos niveles se ven reflejados en alto conflicto de uso del suelo en donde son explotados mas haya de su capacidad. Por otro lado, se corresponden con los niveles de erosión ligera y sin erosión existente en la microcuenca y a niveles de precipitaciones.

Es importante mencionar que la amenaza muy alta, en particular coincide en parte al igual que en el mapa de susceptibilidad con el cerro Lomas de Ojo de Agua, lo que significa que esta área a pesar de ser susceptible por factores intrínsecos, es también susceptible por factores extrínsecos implicando así mayores riesgos para las comunidades aledañas.

En estas mismas áreas hay indicadores que muestran que los procesos de deslizamientos están activos, tal es el caso de la vegetación arbórea como se muestran en las siguientes figuras:

En la figura 7, se muestra la curvatura del fuste del árbol debido al cambio de posición vertical original, debido a que el proceso de deslizamiento se encuentra activo y desplazándose lentamente. En la figura 8, se muestra también que el proceso de deslizamiento en la ladera se encuentra activo y que hay desplazamiento lento y continuo obligando a los árboles a mantener la verticalidad (fototropismo) curvando su fuste.
El nivel de amenaza moderada (11.16%), al igual que los anteriores es atribuido a los mismos factores, pero su valor se ve mayormente reflejado por los niveles de erosión moderada y severa.

Los niveles de amenaza baja que cubre la mayor parte del área con 36.06 % y muy baja que cubre la menor parte del área con 0.10 % se corresponden mayormente con el bajo conflicto de uso del suelo, principalmente la amenaza baja en donde el uso adecuado del suelo evita que este nivel aumente.

Figura 7: Árbol en las laderas del Cerro Lomas de Ojo de

Figura 8: Árbol de palmera en las laderas con deslizamiento activo.
Figura 9: Mapa de Factores Exógenos de la microcuenca Las Marías, Telica, León.
5.4 Mapa de Amenaza Relativa por Fenómenos de Deslizamientos de Tierra

Los resultados obtenidos para el mapa de amenaza relativa por fenómenos de deslizamientos de tierra (Figura 11), expresan cinco niveles de amenaza relativa debidas tanto a los factores intrínsecos como los extrínsecos.

El nivel de amenaza relativa muy alta cubre el 4.66% del área de la microcuenca, esto es producto de que las características intrínsecas con niveles moderados y muy altos de susceptibility. Incluye en ello la litología poco permeable y fracturada con baja densidad de drenaje y pendientes de 8 % y mayores de 15 %, dan como resultado mayor susceptibility a deslizamientos de tierra frente a los niveles de amenaza muy altos concerniente a factores extrínsecos como lo son la deforestación, malas prácticas agrícolas y suelos poco erosionados.

Un aspecto muy importante es que el nivel de amenaza relativa muy alta coincide con los niveles de amenaza y susceptibility de los mapas de factores extrínsecos e intrínsecos en el cerro Lomas de Ojo de Agua, lo que significa que esta área constituye la de mayor vulnerabilidad a los deslizamientos de tierra por la cercanías de las comunidades de Pozo Viejo en el costado sur y Ojo de Agua en la parte norte de dicho cerro, ambos ubicados en la parte norte de la microcuenca.

Cabe destacar aquí que el número de eventos de deslizamientos de tierra del año 1998 fueron exactamente en estas mismas áreas que el modelo muestra como de alta amenaza relativa como se observa en la figura 10.

Los otros sitios de moderada a alta vulnerabilidad a deslizamientos se encuentran despoblados y no son áreas que amenazan a la vida humana sino más bien harán daños al medio ambiente y a los cultivos principalmente, sin embargo durante los eventos lluviosos pueden llegar a ser catastróficos para las personas que trabajan la tierra durante los períodos de Septiembre y Octubre.
Los niveles bajos y muy bajos corresponden al 11.93 % y el 40.10 % del área total de la microcuenca respectivamente y se corresponden con las áreas con pendientes menores de 8 %, a su vez estas áreas poseen un bajo conflicto de uso del suelo ya que en su mayoría encontramos áreas explotadas a su capacidad y zonas boscosas.

También se puede observar que los puntos georeferenciados de los eventos de 1998 durante el huracán Mitch en la microcuenca (figura 12) se corresponden con los niveles de alta y muy alta amenaza relativa, lo que permite corroborar la efectividad del modelo Heurístico planteado para este trabajo y los resultados obtenidos.
Figura 11: Mapa de amenaza relativa por fenómenos de deslizamientos de la microcuenca Las Marías, Telica, León.
Figura 12: Mapa de áreas modeladas y deslizamientos de 1998 de la microcuenca Las Marías, Telica, León.
VI CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

1. El uso inadecuado del suelo principalmente las actividades agrícolas que implican cambio de cobertura y explotación del suelo más allá de su capacidad, son factores muy determinantes que dan mayores probabilidades a que ocurran los fenómenos de deslizamientos de tierra.

2. Los niveles bajos o mínimos de erosión del suelo incrementan la vulnerabilidad al deslizamiento de tierra, principalmente cuando estos niveles se encuentran localizados en sitios donde el suelo está siendo sobre utilizado. Por el contrario, las áreas en donde los niveles de erosión son más altos, son las menos vulnerables.

3. La mayor susceptibilidad se concentra en el cerro Lomas de Ojo de Agua que presenta litología de conglomerados del grupo Coyol inferior, siendo la litología superficial uno de los factores intrínsecos muy determinantes en la susceptibilidad a deslizamiento de tierra

4. Las zonas con pendientes superiores al 15% son las que presentan mayor susceptibilidad a deslizamientos de tierra, lo cual nos indica que la pendiente tiene una relación directamente proporcional a la ocurrencia de los deslizamientos

5. El cerro Lomas de Ojo de Agua es el área más susceptible según lo obtenido en los resultados de los factores intrínsecos y extrínsecos, lo cual lo convierte en el sitio más vulnerable a los deslizamientos de tierra y el de mayor amenaza para los habitantes de las comunidades de Pozo Viejo y Ojo de Agua.

6. Algunas de las zonas definidas como moderada hasta de muy alta susceptibilidad a los deslizamientos de tierra, han presentado eventos de esta naturaleza en 1998
durante el huracán Mitch, lo que demuestra la validez e importancia de los resultados.

7. El uso de las herramientas SIG para la evaluación de los fenómenos de deslizamientos de tierra son de gran utilidad y los resultados obtenidos son comparativamente válidos y validables con la realidad observada en el campo.

8. La aplicación del método Heurístico de calificación de mapas temáticos es aplicable y corroborable sus resultados cuando se cuenta con información a una escala de planificación (1:25,000 – 1:20,000) y cada una de las coberturas de la información de una cuenca o un territorio en general es calificada de acuerdo con la realidad de los mismos.
RECOMENDACIONES

1. Implementar prácticas de conservación de suelo como barreras vivas y el cultivo en curvas a nivel y reforestar las áreas de alta y muy alta susceptibilidad a deslizamientos debido a que estas áreas se encuentran próximas a sufrir deslizamientos de tierra.

2. Establecer rutas de escape, lugares de acogida y de destino en caso de eventos lluviosos que puedan ocasionar deslizamientos de tierra en la microcuenca.

3. Que los gobiernos locales lleguen a un acuerdo con habitantes de las comunidades de Pozo Viejo y Ojo de Agua, para que estos sean reubicados a lugares menos susceptibles.

4. Que los gobiernos municipales de Chinandega, León, Quezalguaque, Posoltega y Telica, implementen en conjunto una estrategia de prevención y reducción del riesgo de pérdidas humanas y económicas.

5. Que los gobiernos locales tomen en cuenta el mapa de amenaza relativa por fenómenos de deslizamiento en el plan de ordenamiento territorial de la microcuenca, para designar como prioridad principal los lugares en donde no se puedan construir casas ni otra infraestructura.
VII BIBLIOGRAFÍA

ANEXOS
ANEXO A

MAPAS TEMÁTICOS DE LOS FACTORES UTILIZADOS PARA EL CÁLCULO DE LA ECUACIÓN UNIVERSAL DE PÉRDIDA DE SUELO (EUPS)
Mapa 1 Factor C: Protección de la cubierta vegetal para la EUPS en la microcuenca Las Marias, Telica, León.
Mapa 2 Factor K: Erodabilidad del suelo para la EUPS en la microcuenca Las Marías, Telica, León.
Mapa 3 Factor LS: Longitud y gradiente de pendiente para la EUPS en la microcuenca Las Marias, Telica, León.
Mapa 4 Factor R: Erosividad de la lluvia para la EUPS en la microcuenca Las Marías, Telica, León.
Mapa 5: Modelo digital de elevaciones de la microcuenca Las Marías, Telica, León.
ANEXO B

MAPAS TEMÁTICOS UTILIZADOS PARA GENERAR EL MAPA DE FACTORES INTRÍNSECOS
Mapa 1: Susceptibilidad a generar deslizamientos en función de la densidad de drenaje en la microcuenca Las Marías, Telica, León.
Mapa 2: Susceptibilidad a generar deslizamientos en función de la litología en la microcuenca Las Marías, Telica, León.
Mapa 3: Susceptibilidad a generar deslizamientos en función de la densidad de estructuras en la microcuenca Las Marías, Telica, León.
Mapa 4: Susceptibilidad a generar deslizamientos en función de la litología y la densidad de estructuras en la microcuenca Las Marías, Telica, León.
Mapa 4: Susceptibilidad a generar deslizamientos en función de la pendiente en la microcuenca Las Marías, Telica, León.
ANEXO C

MAPAS TEMÁTICOS UTILIZADOS PARA GENERAR EL MAPA DE FACTORES EXTRINSECOS O DETONANTES
Mapa 1: Amenaza de deslizamientos de tierra en función del conflicto de uso del suelo en la microcuenca Las Marías, Telica, León.
Mapa 2: Amenaza de deslizamientos de tierra en función de la erosión hídrica actual de la microcuenca Las Marías, Telica, León.
Mapa 3: Amenaza de deslizamientos de tierra en función del clima en la microcuenca Las Marías, Telica, León.

- Pozo Viejo
- Monte Olivo
- Mocorón
- Las Marias
- Los Mangles
- Las Carpas
- Los Portillos
- Ojo de Agua

Leyenda:
- Comunidades
- Red_vial.shp
- Límite de la Microcuenca

Niveles de Amenaza: Alto 7.56 %, Muy Alto 92.44 %

Realizado en el Laboratorio
SIGMA-FARENA-UNA

Fuente:
SIGMA-FARENA-UNA

Proyección:
Universal Transversal Mercator
Datum:
Horizontal NAD 27 Central
Esferoide de Clark
Zona 16
ANEXO D
DATOS METEOROLÓGICOS PARA LA ESTACIÓN LAS MARÍAS, VILLA 15 DE JULIO Y POSOLTEGA
INSTITUTO NICARAGUENSE DE ESTUDIOS TERRITORIALES
DIRECCION GENERAL DE METEOROLOGIA
RESUMEN METEOROLÓGICO ANUAL

Estación: - LAS MARIAS / LAS MARIAS
Latitud: 12° 39' 42" N
Longitud: 86° 51' 42" W
Años: 1969 - 2004
Elevación: 0 msnm

Parámetro: precipitación (mm)
Tipo: PV

<table>
<thead>
<tr>
<th>Año</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>153.5</td>
<td>91.6</td>
<td>135.0</td>
<td>180.4</td>
<td>395.6</td>
<td>323.4</td>
<td>116.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1976</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>39.3</td>
<td>212.4</td>
<td>72.9</td>
<td>87.4</td>
<td>103.9</td>
<td>193.3</td>
<td>49.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1977</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.6</td>
<td>160.1</td>
<td>101.2</td>
<td>60.6</td>
<td>64.4</td>
<td>238.3</td>
<td>84.9</td>
<td>44.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1978</td>
<td>0.0</td>
<td>30.4</td>
<td>0.0</td>
<td>0.0</td>
<td>211.5</td>
<td>98.8</td>
<td>130.1</td>
<td>249.1</td>
<td>351.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1979</td>
<td>-</td>
</tr>
<tr>
<td>1980</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>179.2</td>
<td>123.9</td>
<td>85.4</td>
<td>-</td>
<td>384.7</td>
<td>357.5</td>
<td>52.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1981</td>
<td>0.0</td>
<td>0.0</td>
<td>38.5</td>
<td>0.5</td>
<td>231.0</td>
<td>424.4</td>
<td>77.2</td>
<td>234.6</td>
<td>194.5</td>
<td>266.2</td>
<td>16.3</td>
<td>10.1</td>
</tr>
<tr>
<td>1982</td>
<td>3.2</td>
<td>0.0</td>
<td>8.9</td>
<td>997.4</td>
<td>234.3</td>
<td>40.9</td>
<td>34.7</td>
<td>335.2</td>
<td>68.8</td>
<td>10.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1983</td>
<td>0.0</td>
<td>0.0</td>
<td>22.6</td>
<td>1.1</td>
<td>29.4</td>
<td>232.7</td>
<td>71.6</td>
<td>175.6</td>
<td>415.3</td>
<td>258.2</td>
<td>100.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1984</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>5.5</td>
<td>85.7</td>
<td>337.2</td>
<td>216.9</td>
<td>232.4</td>
<td>304.2</td>
<td>103.5</td>
<td>14.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1985</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>80.7</td>
<td>136.0</td>
<td>149.8</td>
<td>250.5</td>
<td>212.5</td>
<td>167.3</td>
<td>317.6</td>
<td>212.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1986</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>335.0</td>
<td>161.2</td>
<td>77.3</td>
<td>156.1</td>
<td>295.3</td>
<td>423.9</td>
<td>123.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1987</td>
<td>36.7</td>
<td>36.7</td>
<td>9.7</td>
<td>0.3</td>
<td>63.2</td>
<td>161.2</td>
<td>297.7</td>
<td>178.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1988</td>
<td>0.0</td>
<td>8.0</td>
<td>24.8</td>
<td>0.0</td>
<td>130.1</td>
<td>142.6</td>
<td>159.6</td>
<td>434.5</td>
<td>428.9</td>
<td>351.7</td>
<td>8.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1989</td>
<td>-</td>
</tr>
<tr>
<td>1990</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>75.9</td>
<td>105.8</td>
<td>318.6</td>
<td>269.1</td>
<td>179.3</td>
<td>384.4</td>
<td>388.1</td>
<td>115.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1991</td>
<td>-</td>
</tr>
<tr>
<td>1992</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>25.1</td>
<td>129.6</td>
<td>266.1</td>
<td>81.5</td>
<td>151.6</td>
<td>541.8</td>
<td>60.2</td>
<td>34.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1993</td>
<td>28.7</td>
<td>0.0</td>
<td>23.0</td>
<td>305.0</td>
<td>225.4</td>
<td>49.7</td>
<td>499.1</td>
<td>209.9</td>
<td>48.6</td>
<td>19.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1994</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>60.7</td>
<td>57.6</td>
<td>199.7</td>
<td>71.8</td>
<td>256.8</td>
<td>141.9</td>
<td>140.4</td>
<td>60.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1995</td>
<td>0.0</td>
<td>0.0</td>
<td>88.3</td>
<td>65.3</td>
<td>214.2</td>
<td>290.5</td>
<td>167.4</td>
<td>270.7</td>
<td>398.7</td>
<td>386.3</td>
<td>81.2</td>
<td>31.8</td>
</tr>
<tr>
<td>1996</td>
<td>58.0</td>
<td>0.0</td>
<td>37.5</td>
<td>65.5</td>
<td>327.4</td>
<td>224.0</td>
<td>145.8</td>
<td>328.9</td>
<td>381.7</td>
<td>347.9</td>
<td>124.6</td>
<td>0.0</td>
</tr>
<tr>
<td>1997</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.9</td>
<td>97.0</td>
<td>364.5</td>
<td>77.5</td>
<td>72.8</td>
<td>239.3</td>
<td>160.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1998</td>
<td>-</td>
</tr>
<tr>
<td>1999</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>189.0</td>
<td>264.3</td>
<td>71.2</td>
<td>266.4</td>
<td>442.8</td>
<td>506.2</td>
<td>55.8</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>232.0</td>
<td>77.5</td>
<td>157.9</td>
<td>93.5</td>
<td>391.7</td>
<td>282.4</td>
<td>50.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2001</td>
<td>0.0</td>
<td>57.0</td>
<td>18.3</td>
<td>0.0</td>
<td>201.6</td>
<td>40.6</td>
<td>58.4</td>
<td>137.2</td>
<td>326.6</td>
<td>229.0</td>
<td>85.3</td>
<td>0.0</td>
</tr>
<tr>
<td>2002</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>221.1</td>
<td>236.5</td>
<td>88.2</td>
<td>195.3</td>
<td>198.2</td>
<td>213.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Año</td>
<td>Enero</td>
<td>Febrero</td>
<td>Marzo</td>
<td>Abril</td>
<td>Mayo</td>
<td>Junio</td>
<td>Julio</td>
<td>Agosto</td>
<td>Septiembre</td>
<td>Octubre</td>
<td>Noviembre</td>
<td>Diciembre</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1969</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.8</td>
<td>115.2</td>
<td>232.0</td>
<td>44.1</td>
<td>179.6</td>
<td>353.3</td>
<td>261.9</td>
<td>203.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1970</td>
<td>0.0</td>
<td>0.0</td>
<td>47.4</td>
<td>207.1</td>
<td>250.2</td>
<td>177.8</td>
<td>261.7</td>
<td>220.9</td>
<td>182.7</td>
<td>75.7</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>1971</td>
<td>0.6</td>
<td>0.0</td>
<td>3.4</td>
<td>2.0</td>
<td>228.5</td>
<td>138.8</td>
<td>127.3</td>
<td>366.7</td>
<td>243.1</td>
<td>267.5</td>
<td>69.0</td>
<td>0.9</td>
</tr>
<tr>
<td>1972</td>
<td>0.0</td>
<td>0.0</td>
<td>36.5</td>
<td>198.9</td>
<td>172.0</td>
<td>71.3</td>
<td>100.4</td>
<td>115.7</td>
<td>175.3</td>
<td>70.8</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>1973</td>
<td>0.0</td>
<td>47.1</td>
<td>9.0</td>
<td>157.1</td>
<td>174.1</td>
<td>291.4</td>
<td>282.8</td>
<td>482.5</td>
<td>360.4</td>
<td>35.4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>1974</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>240.1</td>
<td>279.2</td>
<td>117.5</td>
<td>271.5</td>
<td>372.1</td>
<td>236.4</td>
<td>12.5</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>1975</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>85.4</td>
<td>91.6</td>
<td>162.5</td>
<td>225.9</td>
<td>385.3</td>
<td>278.7</td>
<td>87.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1976</td>
<td>0.0</td>
<td>0.0</td>
<td>65.1</td>
<td>38.0</td>
<td>209.0</td>
<td>45.5</td>
<td>140.5</td>
<td>207.6</td>
<td>172.0</td>
<td>77.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1977</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.4</td>
<td>338.9</td>
<td>155.3</td>
<td>41.0</td>
<td>173.5</td>
<td>195.5</td>
<td>70.4</td>
<td>94.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1978</td>
<td>0.0</td>
<td>3.2</td>
<td>52.5</td>
<td>50.0</td>
<td>225.2</td>
<td>176.2</td>
<td>159.8</td>
<td>190.8</td>
<td>247.3</td>
<td>269.5</td>
<td>46.7</td>
<td>32.8</td>
</tr>
<tr>
<td>1979</td>
<td>0.0</td>
<td>0.0</td>
<td>70.5</td>
<td>40.4</td>
<td>262.2</td>
<td>148.7</td>
<td>237.4</td>
<td>433.0</td>
<td>307.9</td>
<td>32.6</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>1980</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>277.5</td>
<td>143.2</td>
<td>159.9</td>
<td>143.7</td>
<td>299.6</td>
<td>316.2</td>
<td>89.6</td>
<td>2.1</td>
</tr>
<tr>
<td>1981</td>
<td>0.0</td>
<td>19.3</td>
<td>45.9</td>
<td>237.9</td>
<td>372.0</td>
<td>84.6</td>
<td>221.4</td>
<td>318.7</td>
<td>286.4</td>
<td>5.3</td>
<td>24.5</td>
<td>24.5</td>
</tr>
<tr>
<td>1982</td>
<td>0.0</td>
<td>0.0</td>
<td>11.8</td>
<td>806.7</td>
<td>136.9</td>
<td>81.3</td>
<td>78.8</td>
<td>216.3</td>
<td>113.0</td>
<td>35.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1983</td>
<td>0.0</td>
<td>0.4</td>
<td>15.0</td>
<td>102.8</td>
<td>176.0</td>
<td>111.5</td>
<td>163.0</td>
<td>407.6</td>
<td>182.3</td>
<td>123.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1984</td>
<td>0.0</td>
<td>0.0</td>
<td>9.7</td>
<td>32.5</td>
<td>115.8</td>
<td>141.1</td>
<td>282.7</td>
<td>205.4</td>
<td>293.5</td>
<td>180.5</td>
<td>25.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1985</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>56.4</td>
<td>157.0</td>
<td>109.6</td>
<td>233.2</td>
<td>426.6</td>
<td>206.1</td>
<td>445.9</td>
<td>206.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1986</td>
<td>0.0</td>
<td>6.6</td>
<td>0.0</td>
<td>0.0</td>
<td>453.7</td>
<td>169.0</td>
<td>76.0</td>
<td>127.7</td>
<td>214.2</td>
<td>291.6</td>
<td>32.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

INSTITUTO NICARAGUENSE DE ESTUDIOS TERRITORIALES
DIRECCION GENERAL DE METEOROLOGIA
RESUMEN METEOROLOGICO ANUAL

Estación: - VILLA 15 DE JULIO / VILLA 15 DE JULIO

Latitud: 12° 47' 24" N
Longitud: 86° 56' 42" W
Años: 1969 - 2004
Elevación: 20 msnm

Parámetro: precipitación (mm)
Tipo: PV
<table>
<thead>
<tr>
<th>Año</th>
<th>2.5</th>
<th>22.6</th>
<th>10.3</th>
<th>0.0</th>
<th>129.7</th>
<th>241.6</th>
<th>175.6</th>
<th>138.4</th>
<th>242.5</th>
<th>89.9</th>
<th>21.5</th>
<th>6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>0.0</td>
<td>0.0</td>
<td>28.0</td>
<td>27.3</td>
<td>191.9</td>
<td>190.5</td>
<td>222.8</td>
<td>519.3</td>
<td>365.0</td>
<td>354.9</td>
<td>52.3</td>
<td>6.3</td>
</tr>
<tr>
<td>1988</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>32.4</td>
<td>221.4</td>
<td>101.7</td>
<td>240.3</td>
<td>381.1</td>
<td>85.6</td>
<td>33.0</td>
<td>-</td>
</tr>
<tr>
<td>1989</td>
<td>7.2</td>
<td>0.0</td>
<td>0.0</td>
<td>27.5</td>
<td>114.5</td>
<td>151.9</td>
<td>249.0</td>
<td>184.3</td>
<td>257.8</td>
<td>43.9</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1990</td>
<td>0.0</td>
<td>0.0</td>
<td>9.3</td>
<td>172.4</td>
<td>748.4</td>
<td>344.5</td>
<td>230.8</td>
<td>74.7</td>
<td>263.7</td>
<td>636.0</td>
<td>630.5</td>
<td>76.5</td>
</tr>
<tr>
<td>1991</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>111.0</td>
<td>151.9</td>
<td>249.0</td>
<td>184.3</td>
<td>257.8</td>
<td>43.9</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>2.6</td>
<td>0.0</td>
<td>35.8</td>
<td>344.5</td>
<td>166.0</td>
<td>388.7</td>
<td>164.3</td>
<td>147.3</td>
<td>48.7</td>
<td>15.0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1993</td>
<td>0.0</td>
<td>0.0</td>
<td>57.0</td>
<td>84.5</td>
<td>151.9</td>
<td>249.0</td>
<td>184.3</td>
<td>257.8</td>
<td>43.9</td>
<td>3.7</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1994</td>
<td>0.0</td>
<td>0.0</td>
<td>57.0</td>
<td>84.5</td>
<td>151.9</td>
<td>249.0</td>
<td>184.3</td>
<td>257.8</td>
<td>43.9</td>
<td>3.7</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1995</td>
<td>0.0</td>
<td>0.0</td>
<td>159.2</td>
<td>50.0</td>
<td>97.4</td>
<td>161.2</td>
<td>162.8</td>
<td>332.0</td>
<td>388.3</td>
<td>290.9</td>
<td>42.4</td>
<td>26.8</td>
</tr>
<tr>
<td>1996</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>344.5</td>
<td>166.0</td>
<td>388.7</td>
<td>164.3</td>
<td>147.3</td>
<td>48.7</td>
<td>15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1997</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>57.4</td>
<td>377.8</td>
<td>129.9</td>
<td>53.8</td>
<td>179.3</td>
<td>167.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1998</td>
<td>0.0</td>
<td>0.0</td>
<td>26.2</td>
<td>55.8</td>
<td>128.0</td>
<td>195.0</td>
<td>216.2</td>
<td>127.0</td>
<td>1270.8</td>
<td>127.0</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td>1999</td>
<td>0.0</td>
<td>0.0</td>
<td>5.2</td>
<td>12.5</td>
<td>282.1</td>
<td>121.5</td>
<td>94.6</td>
<td>161.5</td>
<td>415.0</td>
<td>256.2</td>
<td>111.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>148.5</td>
<td>103.3</td>
<td>74.0</td>
<td>130.5</td>
<td>362.7</td>
<td>191.2</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2001</td>
<td>0.0</td>
<td>24.2</td>
<td>0.0</td>
<td>189.6</td>
<td>34.8</td>
<td>168.3</td>
<td>159.2</td>
<td>98.4</td>
<td>331.4</td>
<td>133.3</td>
<td>20.8</td>
<td>0.0</td>
</tr>
<tr>
<td>2002</td>
<td>0.0</td>
<td>9.2</td>
<td>0.0</td>
<td>273.6</td>
<td>171.8</td>
<td>91.1</td>
<td>478.6</td>
<td>331.4</td>
<td>133.3</td>
<td>20.8</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>2003</td>
<td>0.0</td>
<td>35.6</td>
<td>12.5</td>
<td>160.7</td>
<td>356.8</td>
<td>34.3</td>
<td>200.8</td>
<td>203.6</td>
<td>192.9</td>
<td>123.3</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>-</td>
</tr>
<tr>
<td>Suma</td>
<td>10.9</td>
<td>38.0</td>
<td>408.3</td>
<td>774.9</td>
<td>6816.7</td>
<td>6494.4</td>
<td>4580.1</td>
<td>7529.4</td>
<td>9729.8</td>
<td>8384.0</td>
<td>2108.2</td>
<td>259.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>0.3</th>
<th>1.1</th>
<th>12.0</th>
<th>22.1</th>
<th>194.8</th>
<th>185.6</th>
<th>130.9</th>
<th>215.1</th>
<th>278.0</th>
<th>239.5</th>
<th>60.2</th>
<th>7.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>0.3</td>
<td>1.1</td>
<td>12.0</td>
<td>22.1</td>
<td>194.8</td>
<td>185.6</td>
<td>130.9</td>
<td>215.1</td>
<td>278.0</td>
<td>239.5</td>
<td>60.2</td>
<td>7.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>7.2</th>
<th>22.6</th>
<th>159.2</th>
<th>75.8</th>
<th>806.7</th>
<th>377.8</th>
<th>388.7</th>
<th>519.3</th>
<th>482.5</th>
<th>1270.8</th>
<th>206.3</th>
<th>72.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máximo</td>
<td>7.2</td>
<td>22.6</td>
<td>159.2</td>
<td>75.8</td>
<td>806.7</td>
<td>377.8</td>
<td>388.7</td>
<td>519.3</td>
<td>482.5</td>
<td>1270.8</td>
<td>206.3</td>
<td>72.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>32.4</th>
<th>34.8</th>
<th>24.9</th>
<th>53.8</th>
<th>98.4</th>
<th>43.9</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>32.4</td>
<td>34.8</td>
<td>24.9</td>
<td>53.8</td>
<td>98.4</td>
<td>43.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
RESUMEN METEOROLÓGICO ANUAL

Estación: POSOLTEGA II / POSOLTEGA II
Latitud: 12° 33’ 00” N
Código: 64 045
Longitud: 86° 59’ 00” W
Años: 1967 - 2004
Elevación: 800 msnm
Parámetro: precipitación (mm)
Tipo: PV

<table>
<thead>
<tr>
<th>Año</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>-</td>
</tr>
<tr>
<td>1968</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>160.5</td>
<td>403.7</td>
<td>124.0</td>
<td>356.2</td>
<td>-</td>
<td>137.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>-</td>
<td>-</td>
<td>45.0</td>
<td>160.5</td>
<td>403.7</td>
<td>124.0</td>
<td>356.2</td>
<td>-</td>
<td>-</td>
<td>137.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>149.0</td>
<td>215.8</td>
<td>124.0</td>
<td>243.7</td>
<td>378.9</td>
<td>181.0</td>
<td>148.5</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>447.0</td>
<td>132.5</td>
<td>54.0</td>
<td>99.4</td>
<td>143.7</td>
<td>190.7</td>
<td>73.8</td>
<td>28.8</td>
</tr>
<tr>
<td>1973</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>251.3</td>
<td>306.4</td>
<td>239.7</td>
<td>629.1</td>
<td>534.5</td>
<td>31.8</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>7.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>168.2</td>
<td>50.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>198.7</td>
<td>66.0</td>
<td>83.7</td>
<td>332.7</td>
<td>632.4</td>
<td>505.6</td>
<td>165.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1976</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>83.7</td>
<td>416.4</td>
<td>7.6</td>
<td>223.6</td>
<td>121.9</td>
<td>195.6</td>
<td>93.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1977</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>444.5</td>
<td>210.7</td>
<td>43.1</td>
<td>147.4</td>
<td>282.0</td>
<td>198.1</td>
<td>78.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1978</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>30.5</td>
<td>482.2</td>
<td>195.6</td>
<td>279.5</td>
<td>371.0</td>
<td>485.1</td>
<td>251.5</td>
<td>20.3</td>
<td>43.2</td>
</tr>
<tr>
<td>1979</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>248.9</td>
<td>726.4</td>
<td>698.5</td>
<td>104.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>251.6</td>
<td>269.2</td>
<td>253.9</td>
<td>337.8</td>
<td>602.0</td>
<td>307.3</td>
<td>147.3</td>
<td>50.8</td>
</tr>
<tr>
<td>1981</td>
<td>0.0</td>
<td>0.0</td>
<td>12.7</td>
<td>51.2</td>
<td>644.7</td>
<td>606.9</td>
<td>187.9</td>
<td>462.3</td>
<td>271.6</td>
<td>538.1</td>
<td>27.9</td>
<td>20.3</td>
</tr>
<tr>
<td>1982</td>
<td>30.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1132.6</td>
<td>304.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>38.9</td>
<td>0.0</td>
<td>12.7</td>
<td>90.7</td>
<td>4414.0</td>
<td>3178.7</td>
<td>1397.4</td>
<td>3148.6</td>
<td>4273.1</td>
<td>3600.9</td>
<td>1028.9</td>
<td>176.7</td>
</tr>
<tr>
<td>Media</td>
<td>3.2</td>
<td>0.0</td>
<td>1.1</td>
<td>7.0</td>
<td>367.8</td>
<td>264.9</td>
<td>139.7</td>
<td>286.2</td>
<td>427.3</td>
<td>360.1</td>
<td>93.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Máximo</td>
<td>30.5</td>
<td>0.0</td>
<td>12.7</td>
<td>45.0</td>
<td>1132.6</td>
<td>606.9</td>
<td>279.5</td>
<td>462.3</td>
<td>726.4</td>
<td>698.5</td>
<td>165.0</td>
<td>50.8</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>83.7</td>
<td>50.8</td>
<td>7.6</td>
<td>99.4</td>
<td>121.9</td>
<td>181.0</td>
<td>20.3</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>